Subgroups of odd depth—a necessary condition
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1039-1048
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper gives necessary and sufficient conditions for subgroups with trivial core to be of odd depth. We show that a subgroup with trivial core is an odd depth subgroup if and only if certain induced modules from it are faithful. Algebraically this gives a combinatorial condition that has to be satisfied by the subgroups with trivial core in order to be subgroups of a given odd depth. The condition can be expressed as a certain matrix with $\{0,1\}$-entries to have maximal rank. The entries of the matrix correspond to the sizes of the intersections of the subgroup with any of its conjugate.
This paper gives necessary and sufficient conditions for subgroups with trivial core to be of odd depth. We show that a subgroup with trivial core is an odd depth subgroup if and only if certain induced modules from it are faithful. Algebraically this gives a combinatorial condition that has to be satisfied by the subgroups with trivial core in order to be subgroups of a given odd depth. The condition can be expressed as a certain matrix with $\{0,1\}$-entries to have maximal rank. The entries of the matrix correspond to the sizes of the intersections of the subgroup with any of its conjugate.
DOI : 10.1007/s10587-013-0070-9
Classification : 34B16, 34C25
Keywords: depth of group algebras; finite group; faithful representation
@article{10_1007_s10587_013_0070_9,
     author = {Burciu, Sebastian},
     title = {Subgroups of odd depth{\textemdash}a necessary condition},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1039--1048},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0070-9},
     mrnumber = {3165513},
     zbl = {1299.20001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0070-9/}
}
TY  - JOUR
AU  - Burciu, Sebastian
TI  - Subgroups of odd depth—a necessary condition
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1039
EP  - 1048
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0070-9/
DO  - 10.1007/s10587-013-0070-9
LA  - en
ID  - 10_1007_s10587_013_0070_9
ER  - 
%0 Journal Article
%A Burciu, Sebastian
%T Subgroups of odd depth—a necessary condition
%J Czechoslovak Mathematical Journal
%D 2013
%P 1039-1048
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0070-9/
%R 10.1007/s10587-013-0070-9
%G en
%F 10_1007_s10587_013_0070_9
Burciu, Sebastian. Subgroups of odd depth—a necessary condition. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1039-1048. doi: 10.1007/s10587-013-0070-9

[1] Boltje, R., Danz, S., Külshammer, B.: On the depth of subgroups and group algebra extensions. J. Algebra 335 (2011), 258-281. | DOI | MR | Zbl

[2] Boltje, R., Külshammer, B.: On the depth $2$ condition for group algebra and Hopf algebra extensions. J. Algebra 323 (2010), 1783-1796. | DOI | MR | Zbl

[3] Bourgain, J., Vu, V. H., Wood, P. M.: On the singularity probability of discrete random matrices. J. Funct. Anal. 258 (2010), 559-603. | DOI | MR | Zbl

[4] Burciu, S., Kadison, L.: Subgroups of depth three. Perspectives in Mathematics and Physics: Essays Dedicated to Isadore Singer's 85th Birthday T. Mrowka et al. Surveys in Differential Geometry 15 International Press, Somerville (2011), 17-36. | MR | Zbl

[5] Burciu, S., Kadison, L., Külshammer, B.: On subgroup depth. (With an appendix by S. Danz and B. Külshammer). Int. Electron. J. Algebra (electronic only) 9 (2011), 133-166. | MR | Zbl

[6] Gantmakher, F. R.: Matrix theory. With an appendix by V. B. Lidskij. With a preface by D. P. Želobenko. Translated from the second Russian edition by H. Boseck, D. Soyka and K. Stengert, Hochschulbücher für Mathematik, Bd. 86 VEB Deutscher Verlag der Wissenschaften, Berlin (1986), German. | MR

[7] Goodman, F. M., Harpe, P. De la, Jones, V. F. R.: Coxeter Graphs and Towers of Algebras. Mathematical Sciences Research Institute Publications 14 Springer, New York (1989). | DOI | MR | Zbl

[8] Kadison, L., Külshammer, B.: Depth two, normality and a trace ideal condition for Frobenius extensions. Commun. Algebra 34 (2006), 3103-3122. | DOI | MR | Zbl

[9] Metropolis, N., Stein, P. R.: On a class of $(0,1)$ matrices with vanishing determinants. J. Comb. Theory. 3 (1967), 191-198. | DOI | MR | Zbl

[10] Rieffel, M. A.: Normal subrings and induced representations. J. Algebra 59 (1979), 364-386. | DOI | MR | Zbl

[11] Živković, M.: Classification of small $(0,1)$ matrices. Linear Algebra Appl. 414 (2006), 310-346. | DOI | MR | Zbl

Cité par Sources :