Keywords: two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; $s$-nonmeasurability; Luzin set; Sierpiński set
@article{10_1007_s10587_013_0069_2,
author = {Bienias, Marek and G{\l}\k{a}b, Szymon and Ra{\l}owski, Robert and \.Zeberski, Szymon},
title = {Two point sets with additional properties},
journal = {Czechoslovak Mathematical Journal},
pages = {1019--1037},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0069-2},
mrnumber = {3165512},
zbl = {06373959},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0069-2/}
}
TY - JOUR AU - Bienias, Marek AU - Głąb, Szymon AU - Rałowski, Robert AU - Żeberski, Szymon TI - Two point sets with additional properties JO - Czechoslovak Mathematical Journal PY - 2013 SP - 1019 EP - 1037 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0069-2/ DO - 10.1007/s10587-013-0069-2 LA - en ID - 10_1007_s10587_013_0069_2 ER -
%0 Journal Article %A Bienias, Marek %A Głąb, Szymon %A Rałowski, Robert %A Żeberski, Szymon %T Two point sets with additional properties %J Czechoslovak Mathematical Journal %D 2013 %P 1019-1037 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0069-2/ %R 10.1007/s10587-013-0069-2 %G en %F 10_1007_s10587_013_0069_2
Bienias, Marek; Głąb, Szymon; Rałowski, Robert; Żeberski, Szymon. Two point sets with additional properties. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1019-1037. doi: 10.1007/s10587-013-0069-2
[1] Bell, J. L., Slomson, A. B.: Models and Ultraproducts. An Introduction. North-Holland Publishing Company, Amsterdam (1969). | MR | Zbl
[2] Carlson, T. J.: Strong measure zero and strongly meager sets. Proc. Am. Math. Soc. 118 (1993), 577-586. | DOI | MR | Zbl
[3] Cichoń, J., Morayne, M., Rałowski, R., Ryll-Nardzewski, C., Żeberski, S.: On nonmeasurable unions. Topology Appl. 154 (2007), 884-893. | DOI | MR | Zbl
[4] Dijkstra, J. J., Kunen, K., Mill, J. van: Hausdorff measures and two point set extensions. Fundam. Math. 157 (1998), 43-60. | MR
[5] Dijkstra, J. J., Mill, J. van: Two point set extensions---a counterexample. Proc. Am. Math. Soc. 125 (1997), 2501-2502. | DOI | MR
[6] Jech, T.: Set Theory. The third millennium edition, revised and expanded. Springer Monographs in Mathematics Springer, Berlin (2003). | MR | Zbl
[7] Kraszewski, J., Rałowski, R., Szczepaniak, P., Żeberski, S.: Bernstein sets and $\kappa$-coverings. Math. Log. Q. 56 (2010), 216-224. | DOI | MR
[8] Kunen, K.: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics vol. 102 North-Holland Publishing Company, Amsterdam (1980). | MR | Zbl
[9] Larman, D. D.: A problem of incidence. J. Lond. Math. Soc. 43 (1968), 407-409. | DOI | MR | Zbl
[10] Mauldin, R. D.: On sets which meet each line in exactly two points. Bull. Lond. Math. Soc. 30 (1998), 397-403. | DOI | MR | Zbl
[11] Mazurkiewicz, S.: O pewnej mnogości płaskiej, która ma z każdą prostą dwa i tylko dwa punkty wspólne. Polish Comptes Rendus des Séances de la Société des Sciences et Lettres de Varsovie 7 (1914), 382-384 French transl
Cité par Sources :