Two point sets with additional properties
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1019-1037
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some $\sigma $-ideal, being (completely) nonmeasurable with respect to different $\sigma $-ideals, being a $\kappa $-covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations of two point sets, namely: partial two point sets and $n$ point sets for $n=3,4,\ldots , \aleph _0,$ $\aleph _1.$ We obtain consistent results connecting partial two point sets and some combinatorial properties (e.g. being an m.a.d. family).
A subset of the plane is called a two point set if it intersects any line in exactly two points. We give constructions of two point sets possessing some additional properties. Among these properties we consider: being a Hamel base, belonging to some $\sigma $-ideal, being (completely) nonmeasurable with respect to different $\sigma $-ideals, being a $\kappa $-covering. We also give examples of properties that are not satisfied by any two point set: being Luzin, Sierpiński and Bernstein set. We also consider natural generalizations of two point sets, namely: partial two point sets and $n$ point sets for $n=3,4,\ldots , \aleph _0,$ $\aleph _1.$ We obtain consistent results connecting partial two point sets and some combinatorial properties (e.g. being an m.a.d. family).
DOI : 10.1007/s10587-013-0069-2
Classification : 03E35, 03E75, 15A03, 28A05
Keywords: two point set; partial two point set; complete nonmeasurability; Hamel basis; Marczewski measurable set; Marczewski null; $s$-nonmeasurability; Luzin set; Sierpiński set
@article{10_1007_s10587_013_0069_2,
     author = {Bienias, Marek and G{\l}\k{a}b, Szymon and Ra{\l}owski, Robert and \.Zeberski, Szymon},
     title = {Two point sets with additional properties},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1019--1037},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0069-2},
     mrnumber = {3165512},
     zbl = {06373959},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0069-2/}
}
TY  - JOUR
AU  - Bienias, Marek
AU  - Głąb, Szymon
AU  - Rałowski, Robert
AU  - Żeberski, Szymon
TI  - Two point sets with additional properties
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1019
EP  - 1037
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0069-2/
DO  - 10.1007/s10587-013-0069-2
LA  - en
ID  - 10_1007_s10587_013_0069_2
ER  - 
%0 Journal Article
%A Bienias, Marek
%A Głąb, Szymon
%A Rałowski, Robert
%A Żeberski, Szymon
%T Two point sets with additional properties
%J Czechoslovak Mathematical Journal
%D 2013
%P 1019-1037
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0069-2/
%R 10.1007/s10587-013-0069-2
%G en
%F 10_1007_s10587_013_0069_2
Bienias, Marek; Głąb, Szymon; Rałowski, Robert; Żeberski, Szymon. Two point sets with additional properties. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1019-1037. doi: 10.1007/s10587-013-0069-2

[1] Bell, J. L., Slomson, A. B.: Models and Ultraproducts. An Introduction. North-Holland Publishing Company, Amsterdam (1969). | MR | Zbl

[2] Carlson, T. J.: Strong measure zero and strongly meager sets. Proc. Am. Math. Soc. 118 (1993), 577-586. | DOI | MR | Zbl

[3] Cichoń, J., Morayne, M., Rałowski, R., Ryll-Nardzewski, C., Żeberski, S.: On nonmeasurable unions. Topology Appl. 154 (2007), 884-893. | DOI | MR | Zbl

[4] Dijkstra, J. J., Kunen, K., Mill, J. van: Hausdorff measures and two point set extensions. Fundam. Math. 157 (1998), 43-60. | MR

[5] Dijkstra, J. J., Mill, J. van: Two point set extensions---a counterexample. Proc. Am. Math. Soc. 125 (1997), 2501-2502. | DOI | MR

[6] Jech, T.: Set Theory. The third millennium edition, revised and expanded. Springer Monographs in Mathematics Springer, Berlin (2003). | MR | Zbl

[7] Kraszewski, J., Rałowski, R., Szczepaniak, P., Żeberski, S.: Bernstein sets and $\kappa$-coverings. Math. Log. Q. 56 (2010), 216-224. | DOI | MR

[8] Kunen, K.: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics vol. 102 North-Holland Publishing Company, Amsterdam (1980). | MR | Zbl

[9] Larman, D. D.: A problem of incidence. J. Lond. Math. Soc. 43 (1968), 407-409. | DOI | MR | Zbl

[10] Mauldin, R. D.: On sets which meet each line in exactly two points. Bull. Lond. Math. Soc. 30 (1998), 397-403. | DOI | MR | Zbl

[11] Mazurkiewicz, S.: O pewnej mnogości płaskiej, która ma z każdą prostą dwa i tylko dwa punkty wspólne. Polish Comptes Rendus des Séances de la Société des Sciences et Lettres de Varsovie 7 (1914), 382-384 French transl

Cité par Sources :