Keywords: martingale; stochastic integral; maximal inequality; differential subordination
@article{10_1007_s10587_013_0068_3,
author = {Os\k{e}kowski, Adam},
title = {A sharp maximal inequality for continuous martingales and their differential subordinates},
journal = {Czechoslovak Mathematical Journal},
pages = {1001--1018},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0068-3},
mrnumber = {3165511},
zbl = {06373958},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0068-3/}
}
TY - JOUR AU - Osękowski, Adam TI - A sharp maximal inequality for continuous martingales and their differential subordinates JO - Czechoslovak Mathematical Journal PY - 2013 SP - 1001 EP - 1018 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0068-3/ DO - 10.1007/s10587-013-0068-3 LA - en ID - 10_1007_s10587_013_0068_3 ER -
%0 Journal Article %A Osękowski, Adam %T A sharp maximal inequality for continuous martingales and their differential subordinates %J Czechoslovak Mathematical Journal %D 2013 %P 1001-1018 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0068-3/ %R 10.1007/s10587-013-0068-3 %G en %F 10_1007_s10587_013_0068_3
Osękowski, Adam. A sharp maximal inequality for continuous martingales and their differential subordinates. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1001-1018. doi: 10.1007/s10587-013-0068-3
[1] Bañuelos, R., Méndez-Hernandez, P. J.: Space-time Brownian motion and the Beurling-Ahlfors transform. Indiana Univ. Math. J. 52 (2003), 981-990. | DOI | MR | Zbl
[2] Bañuelos, R., Wang, G.: Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms. Duke Math. J. 80 (1995), 575-600. | DOI | MR | Zbl
[3] Burkholder, D. L.: Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab. 12 (1984), 647-702. | DOI | MR | Zbl
[4] Burkholder, D. L.: A sharp and strict $L^p$-inequality for stochastic integrals. Ann. Probab. 15 (1987), 268-273. | DOI | MR
[5] Burkholder, D. L.: Explorations in martingale theory and its applications. Calcul des Probabilités Ec. d'Été, Saint-Flour/Fr. 1989, Lect. Notes Math. 1464 1-66 (1991), Springer, Berlin. | DOI | MR | Zbl
[6] Burkholder, D. L.: Sharp norm comparison of martingale maximal functions and stochastic integrals. Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994) 343-358 Proc. Sympos. Appl. Math., 52, Amer. Math. Soc. Providence, RI (1997). | MR | Zbl
[7] Dellacherie, C., Meyer, P. A.: Probabilities and Potential. B: Theory of Martingales. Transl. from the French and prep. by J. P. Wilson North-Holland Mathematics Studies, Amsterdam (1982). | MR | Zbl
[8] Geiss, S., Montgomery-Smith, S., Saksman, E.: On singular integral and martingale transforms. Trans. Am. Math. Soc. 362 (2010), 553-575. | DOI | MR | Zbl
[9] Nazarov, F. L., Volberg, A.: Heat extension of the Beurling operator and estimates for its norm. Algebra i Analiz 15 (2003), 142-158 Russian translation in St. Petersburg Math. J. 15 (2004), 563-573. | MR
[10] Osękowski, A.: Sharp LlogL inequality for differentially subordinated martingales. Illinois J. Math. 52 (2008), 745-756. | DOI | MR
[11] Osękowski, A.: Sharp inequality for martingale maximal functions and stochastic integrals. Illinois J. Math. 54 (2010), 1133-1156. | DOI | MR | Zbl
[12] Osękowski, A.: Maximal inequalities for continuous martingales and their differential subordinates. Proc. Am. Math. Soc. 139 (2011), 721-734. | DOI | MR | Zbl
[13] Osękowski, A.: Maximal inequalities for martingales and their differential subordinates. (to appear) in J. Theor. Probab. DOI:10.1007/s10959-012-0458-8. | DOI
[14] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. 3rd ed., Grundlehren der Mathematischen Wissenschaften 293 Springer, Berlin, 1999. | MR | Zbl
[15] Suh, Y.: A sharp weak type $(p,p)$ inequality $(p>2)$ for martingale transforms and other subordinate martingales. Trans. Am. Math. Soc. 357 (2005), 1545-1564. | DOI | MR | Zbl
[16] Wang, G.: Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities. Ann. Probab. 23 (1995), 522-551. | DOI | MR | Zbl
Cité par Sources :