A sharp maximal inequality for continuous martingales and their differential subordinates
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1001-1018 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb R^\nu $, $\nu \geq 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality $$ \|\sup _{t\geq 0} |Y_t| \|_1\leq 2\|\sup _{t\geq 0} |X_t| \|_1. $$ The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder's method and rests on the construction of an appropriate special function.
Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb R^\nu $, $\nu \geq 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality $$ \|\sup _{t\geq 0} |Y_t| \|_1\leq 2\|\sup _{t\geq 0} |X_t| \|_1. $$ The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder's method and rests on the construction of an appropriate special function.
DOI : 10.1007/s10587-013-0068-3
Classification : 60G44, 60G46
Keywords: martingale; stochastic integral; maximal inequality; differential subordination
@article{10_1007_s10587_013_0068_3,
     author = {Os\k{e}kowski, Adam},
     title = {A sharp maximal inequality for continuous martingales and their differential subordinates},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1001--1018},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0068-3},
     mrnumber = {3165511},
     zbl = {06373958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0068-3/}
}
TY  - JOUR
AU  - Osękowski, Adam
TI  - A sharp maximal inequality for continuous martingales and their differential subordinates
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1001
EP  - 1018
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0068-3/
DO  - 10.1007/s10587-013-0068-3
LA  - en
ID  - 10_1007_s10587_013_0068_3
ER  - 
%0 Journal Article
%A Osękowski, Adam
%T A sharp maximal inequality for continuous martingales and their differential subordinates
%J Czechoslovak Mathematical Journal
%D 2013
%P 1001-1018
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0068-3/
%R 10.1007/s10587-013-0068-3
%G en
%F 10_1007_s10587_013_0068_3
Osękowski, Adam. A sharp maximal inequality for continuous martingales and their differential subordinates. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1001-1018. doi: 10.1007/s10587-013-0068-3

[1] Bañuelos, R., Méndez-Hernandez, P. J.: Space-time Brownian motion and the Beurling-Ahlfors transform. Indiana Univ. Math. J. 52 (2003), 981-990. | DOI | MR | Zbl

[2] Bañuelos, R., Wang, G.: Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms. Duke Math. J. 80 (1995), 575-600. | DOI | MR | Zbl

[3] Burkholder, D. L.: Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab. 12 (1984), 647-702. | DOI | MR | Zbl

[4] Burkholder, D. L.: A sharp and strict $L^p$-inequality for stochastic integrals. Ann. Probab. 15 (1987), 268-273. | DOI | MR

[5] Burkholder, D. L.: Explorations in martingale theory and its applications. Calcul des Probabilités Ec. d'Été, Saint-Flour/Fr. 1989, Lect. Notes Math. 1464 1-66 (1991), Springer, Berlin. | DOI | MR | Zbl

[6] Burkholder, D. L.: Sharp norm comparison of martingale maximal functions and stochastic integrals. Proceedings of the Norbert Wiener Centenary Congress, 1994 (East Lansing, MI, 1994) 343-358 Proc. Sympos. Appl. Math., 52, Amer. Math. Soc. Providence, RI (1997). | MR | Zbl

[7] Dellacherie, C., Meyer, P. A.: Probabilities and Potential. B: Theory of Martingales. Transl. from the French and prep. by J. P. Wilson North-Holland Mathematics Studies, Amsterdam (1982). | MR | Zbl

[8] Geiss, S., Montgomery-Smith, S., Saksman, E.: On singular integral and martingale transforms. Trans. Am. Math. Soc. 362 (2010), 553-575. | DOI | MR | Zbl

[9] Nazarov, F. L., Volberg, A.: Heat extension of the Beurling operator and estimates for its norm. Algebra i Analiz 15 (2003), 142-158 Russian translation in St. Petersburg Math. J. 15 (2004), 563-573. | MR

[10] Osękowski, A.: Sharp LlogL inequality for differentially subordinated martingales. Illinois J. Math. 52 (2008), 745-756. | DOI | MR

[11] Osękowski, A.: Sharp inequality for martingale maximal functions and stochastic integrals. Illinois J. Math. 54 (2010), 1133-1156. | DOI | MR | Zbl

[12] Osękowski, A.: Maximal inequalities for continuous martingales and their differential subordinates. Proc. Am. Math. Soc. 139 (2011), 721-734. | DOI | MR | Zbl

[13] Osękowski, A.: Maximal inequalities for martingales and their differential subordinates. (to appear) in J. Theor. Probab. DOI:10.1007/s10959-012-0458-8. | DOI

[14] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. 3rd ed., Grundlehren der Mathematischen Wissenschaften 293 Springer, Berlin, 1999. | MR | Zbl

[15] Suh, Y.: A sharp weak type $(p,p)$ inequality $(p>2)$ for martingale transforms and other subordinate martingales. Trans. Am. Math. Soc. 357 (2005), 1545-1564. | DOI | MR | Zbl

[16] Wang, G.: Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities. Ann. Probab. 23 (1995), 522-551. | DOI | MR | Zbl

Cité par Sources :