A sharp maximal inequality for continuous martingales and their differential subordinates
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1001-1018
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb R^\nu $, $\nu \geq 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality $$ \|\sup _{t\geq 0} |Y_t| \|_1\leq 2\|\sup _{t\geq 0} |X_t| \|_1. $$ The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder's method and rests on the construction of an appropriate special function.
Assume that $X$, $Y$ are continuous-path martingales taking values in $\mathbb R^\nu $, $\nu \geq 1$, such that $Y$ is differentially subordinate to $X$. The paper contains the proof of the maximal inequality $$ \|\sup _{t\geq 0} |Y_t| \|_1\leq 2\|\sup _{t\geq 0} |X_t| \|_1. $$ The constant $2$ is shown to be the best possible, even in the one-dimensional setting of stochastic integrals with respect to a standard Brownian motion. The proof uses Burkholder's method and rests on the construction of an appropriate special function.
DOI :
10.1007/s10587-013-0068-3
Classification :
60G44, 60G46
Keywords: martingale; stochastic integral; maximal inequality; differential subordination
Keywords: martingale; stochastic integral; maximal inequality; differential subordination
@article{10_1007_s10587_013_0068_3,
author = {Os\k{e}kowski, Adam},
title = {A sharp maximal inequality for continuous martingales and their differential subordinates},
journal = {Czechoslovak Mathematical Journal},
pages = {1001--1018},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0068-3},
mrnumber = {3165511},
zbl = {06373958},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0068-3/}
}
TY - JOUR AU - Osękowski, Adam TI - A sharp maximal inequality for continuous martingales and their differential subordinates JO - Czechoslovak Mathematical Journal PY - 2013 SP - 1001 EP - 1018 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0068-3/ DO - 10.1007/s10587-013-0068-3 LA - en ID - 10_1007_s10587_013_0068_3 ER -
%0 Journal Article %A Osękowski, Adam %T A sharp maximal inequality for continuous martingales and their differential subordinates %J Czechoslovak Mathematical Journal %D 2013 %P 1001-1018 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0068-3/ %R 10.1007/s10587-013-0068-3 %G en %F 10_1007_s10587_013_0068_3
Osękowski, Adam. A sharp maximal inequality for continuous martingales and their differential subordinates. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 1001-1018. doi: 10.1007/s10587-013-0068-3
Cité par Sources :