Reflexivity of bilattices
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 995-1000
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study reflexivity of bilattices. Some examples of reflexive and non-reflexive bilattices are given. With a given subspace lattice $\mathcal {L}$ we may associate a bilattice $\Sigma _{\mathcal {L}}$. Similarly, having a bilattice $\Sigma $ we may construct a subspace lattice $\mathcal {L}_{\Sigma }$. Connections between reflexivity of subspace lattices and associated bilattices are investigated. It is also shown that the direct sum of any two bilattices is never reflexive.
We study reflexivity of bilattices. Some examples of reflexive and non-reflexive bilattices are given. With a given subspace lattice $\mathcal {L}$ we may associate a bilattice $\Sigma _{\mathcal {L}}$. Similarly, having a bilattice $\Sigma $ we may construct a subspace lattice $\mathcal {L}_{\Sigma }$. Connections between reflexivity of subspace lattices and associated bilattices are investigated. It is also shown that the direct sum of any two bilattices is never reflexive.
DOI : 10.1007/s10587-013-0067-4
Classification : 47A15, 47L99
Keywords: reflexive algebra; reflexive lattice; subspace lattice; bilattice
@article{10_1007_s10587_013_0067_4,
     author = {Kli\'s-Garlicka, Kamila},
     title = {Reflexivity of bilattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {995--1000},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0067-4},
     mrnumber = {3165510},
     zbl = {06373957},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0067-4/}
}
TY  - JOUR
AU  - Kliś-Garlicka, Kamila
TI  - Reflexivity of bilattices
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 995
EP  - 1000
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0067-4/
DO  - 10.1007/s10587-013-0067-4
LA  - en
ID  - 10_1007_s10587_013_0067_4
ER  - 
%0 Journal Article
%A Kliś-Garlicka, Kamila
%T Reflexivity of bilattices
%J Czechoslovak Mathematical Journal
%D 2013
%P 995-1000
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0067-4/
%R 10.1007/s10587-013-0067-4
%G en
%F 10_1007_s10587_013_0067_4
Kliś-Garlicka, Kamila. Reflexivity of bilattices. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 995-1000. doi: 10.1007/s10587-013-0067-4

[1] Davidson, K. R., Harrison, K. J.: Distance formulae for subspace lattices. J. Lond. Math. Soc., II. Ser. 39 (1989), 309-323. | DOI | MR | Zbl

[2] Hadwin, D.: General view of reflexivity. Trans. Am. Math. Soc. 344 (1994), 325-360. | DOI | MR | Zbl

[3] Halmos, P. R.: Two subspaces. Trans. Am. Math. Soc. 144 (1969), 381-389. | DOI | MR | Zbl

[4] Loginov, A. I., Shulman, V. S.: Hereditary and intermediate reflexivity of $W^*$-algebras. Izv. Akad. Nauk SSSR, Ser. Mat. 39 (1975), 1260-1273 Russian. | MR

[5] Sarason, D.: Invariant subspaces and unstarred operator algebras. Pac. J. Math. 17 (1966), 511-517. | DOI | MR | Zbl

[6] Shulman, V. S.: Nest algebras by K. R. Davidson: a review. Algebra Anal. 2 (1990), 236-255.

[7] Shulman, V. S., Turowska, L.: Operator synthesis. I. Synthetic sets, bilattices and tensor algebras. J. Funct. Anal. 209 (2004), 293-331. | DOI | MR | Zbl

Cité par Sources :