Keywords: symmetric graph; $s$-transitive graph; $(G, s)$-transitive graph
@article{10_1007_s10587_013_0062_9,
author = {Guo, Song-Tao and Hua, Xiao-Hui and Li, Yan-Tao},
title = {Hexavalent $(G,s)$-transitive graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {923--931},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0062-9},
mrnumber = {3165505},
zbl = {06373952},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/}
}
TY - JOUR AU - Guo, Song-Tao AU - Hua, Xiao-Hui AU - Li, Yan-Tao TI - Hexavalent $(G,s)$-transitive graphs JO - Czechoslovak Mathematical Journal PY - 2013 SP - 923 EP - 931 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/ DO - 10.1007/s10587-013-0062-9 LA - en ID - 10_1007_s10587_013_0062_9 ER -
%0 Journal Article %A Guo, Song-Tao %A Hua, Xiao-Hui %A Li, Yan-Tao %T Hexavalent $(G,s)$-transitive graphs %J Czechoslovak Mathematical Journal %D 2013 %P 923-931 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/ %R 10.1007/s10587-013-0062-9 %G en %F 10_1007_s10587_013_0062_9
Guo, Song-Tao; Hua, Xiao-Hui; Li, Yan-Tao. Hexavalent $(G,s)$-transitive graphs. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 923-931. doi: 10.1007/s10587-013-0062-9
[1] Bosma, W., Cannon, C., Playoust, C.: The Magma algebra system. I: The user language. J. Symb. Comput. 24 (1997), 235-265. | DOI | MR | Zbl
[2] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal subgroups and ordinary characters for simple groups Clarendon Press, Oxford (1985). | MR | Zbl
[3] Dixon, J. D., Mortimer, B.: Permutation Groups. Graduate Texts in Mathematics 163 Springer, New York (1996). | MR | Zbl
[4] Djoković, D. Ž., Miller, G. L.: Regular groups of automorphisms of cubic graphs. J. Comb. Theory, Ser. B 29 (1980), 195-230. | DOI | MR | Zbl
[5] Gardiner, A.: Arc transitivity in graphs. Q. J. Math., Oxf. II. Ser. 24 (1973), 399-407. | DOI | MR | Zbl
[6] Gardiner, A.: Arc transitivity in graphs. II. Q. J. Math., Oxf. II. Ser. 25 (1974), 163-167. | DOI | MR | Zbl
[7] Gardiner, A.: Arc transitivity in graphs. III. Q. J. Math., Oxf. II. Ser. 27 (1976), 313-323. | DOI | MR | Zbl
[8] Guo, S. T., Feng, Y. Q.: A note on pentavalent $s$-transitive graphs. Discrete Math. 312 (2012), 2214-2216. | DOI | MR | Zbl
[9] Li, C. H.: The finite vertex-primitive and vertex-biprimitive $s$-transitive graphs for $s\geq 4$. Trans. Am. Math. Soc. (electronic) 353 (2001), 3511-3529. | DOI | MR
[10] Potočnik, P.: A list of $4$-valent $2$-arc-transitive graphs and finite faithful amalgams of index $(4,2)$. Eur. J. Comb. 30 (2009), 1323-1336. | DOI | MR | Zbl
[11] Potočnik, P., Spiga, P., Verret, G.: Tetravalent arc-transitive graphs with unbounded vertex-stabilizers. Bull. Aust. Math. Soc. 84 (2011), 79-89. | DOI | MR | Zbl
[12] Stroth, G., Weiss, R.: A new construction of the group $ Ru$. Q. J. Math., Oxf. II. Ser. 41 (1990), 237-243. | MR | Zbl
[13] Tutte, W. T.: A family of cubical graphs. Proc. Camb. Philos. Soc. 43 (1947), 459-474. | DOI | MR | Zbl
[14] Weiss, R. M.: Über symmetrische Graphen vom Grad fünf. J. Comb. Theory, Ser. B 17 (1974), 59-64 German. | DOI | MR | Zbl
[15] Weiss, R. M.: Über symmetrische Graphen, deren Valenz eine Primzahl ist. Math. Z. 136 (1974), 277-278 German. | DOI | MR | Zbl
[16] Weiss, R. M.: An application of $p$-factorization methods to symmetric graphs. Math. Proc. Camb. Philos. Soc. 85 (1979), 43-48. | DOI | MR | Zbl
[17] Weiss, R. M.: The nonexistence of $8$-transitive graphs. Combinatorica 1 (1981), 309-311. | DOI | MR | Zbl
[18] Weiss, R. M.: $s$-transitive graphs. Algebraic Methods in Graph Theory, Vol. I, II Colloq. Math. Soc. Janos Bolyai 25 (Szeged, 1978) (1981), 827-847 North-Holland, Amsterdam. | MR | Zbl
[19] Weiss, R. M.: Presentations for $(G,s)$-transitive graphs of small valency. Math. Proc. Camb. Phil. Soc. 101 (1987), 7-20. | DOI | MR
[20] Wielandt, H.: Finite Permutation Groups. Translated from the German by R. Bercov. Academic Press, New York (1964). | MR
[21] Zhou, J. X., Feng, Y. Q.: On symmetric graphs of valency five. Discrete Math. 310 (2010), 1725-1732. | DOI | MR | Zbl
Cité par Sources :