Hexavalent $(G,s)$-transitive graphs
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 923-931
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $X$ be a finite simple undirected graph with a subgroup $G$ of the full automorphism group ${\rm Aut}(X)$. Then $X$ is said to be $(G,s)$-transitive for a positive integer $s$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs, and $s$-transitive if it is $({\rm Aut}(X),s)$-transitive. Let $G_v$ be a stabilizer of a vertex $v\in V(X)$ in $G$. Up to now, the structures of vertex stabilizers $G_v$ of cubic, tetravalent or pentavalent $(G,s)$-transitive graphs are known. Thus, in this paper, we give the structure of the vertex stabilizers $G_v$ of connected hexavalent $(G,s)$-transitive graphs.
Let $X$ be a finite simple undirected graph with a subgroup $G$ of the full automorphism group ${\rm Aut}(X)$. Then $X$ is said to be $(G,s)$-transitive for a positive integer $s$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs, and $s$-transitive if it is $({\rm Aut}(X),s)$-transitive. Let $G_v$ be a stabilizer of a vertex $v\in V(X)$ in $G$. Up to now, the structures of vertex stabilizers $G_v$ of cubic, tetravalent or pentavalent $(G,s)$-transitive graphs are known. Thus, in this paper, we give the structure of the vertex stabilizers $G_v$ of connected hexavalent $(G,s)$-transitive graphs.
DOI :
10.1007/s10587-013-0062-9
Classification :
05C25, 20B25
Keywords: symmetric graph; $s$-transitive graph; $(G, s)$-transitive graph
Keywords: symmetric graph; $s$-transitive graph; $(G, s)$-transitive graph
@article{10_1007_s10587_013_0062_9,
author = {Guo, Song-Tao and Hua, Xiao-Hui and Li, Yan-Tao},
title = {Hexavalent $(G,s)$-transitive graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {923--931},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0062-9},
mrnumber = {3165505},
zbl = {06373952},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/}
}
TY - JOUR AU - Guo, Song-Tao AU - Hua, Xiao-Hui AU - Li, Yan-Tao TI - Hexavalent $(G,s)$-transitive graphs JO - Czechoslovak Mathematical Journal PY - 2013 SP - 923 EP - 931 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/ DO - 10.1007/s10587-013-0062-9 LA - en ID - 10_1007_s10587_013_0062_9 ER -
%0 Journal Article %A Guo, Song-Tao %A Hua, Xiao-Hui %A Li, Yan-Tao %T Hexavalent $(G,s)$-transitive graphs %J Czechoslovak Mathematical Journal %D 2013 %P 923-931 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/ %R 10.1007/s10587-013-0062-9 %G en %F 10_1007_s10587_013_0062_9
Guo, Song-Tao; Hua, Xiao-Hui; Li, Yan-Tao. Hexavalent $(G,s)$-transitive graphs. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 923-931. doi: 10.1007/s10587-013-0062-9
Cité par Sources :