Hexavalent $(G,s)$-transitive graphs
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 923-931.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a finite simple undirected graph with a subgroup $G$ of the full automorphism group ${\rm Aut}(X)$. Then $X$ is said to be $(G,s)$-transitive for a positive integer $s$, if $G$ is transitive on $s$-arcs but not on $(s+1)$-arcs, and $s$-transitive if it is $({\rm Aut}(X),s)$-transitive. Let $G_v$ be a stabilizer of a vertex $v\in V(X)$ in $G$. Up to now, the structures of vertex stabilizers $G_v$ of cubic, tetravalent or pentavalent $(G,s)$-transitive graphs are known. Thus, in this paper, we give the structure of the vertex stabilizers $G_v$ of connected hexavalent $(G,s)$-transitive graphs.
DOI : 10.1007/s10587-013-0062-9
Classification : 05C25, 20B25
Keywords: symmetric graph; $s$-transitive graph; $(G, s)$-transitive graph
@article{10_1007_s10587_013_0062_9,
     author = {Guo, Song-Tao and Hua, Xiao-Hui and Li, Yan-Tao},
     title = {Hexavalent $(G,s)$-transitive graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {923--931},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2013},
     doi = {10.1007/s10587-013-0062-9},
     mrnumber = {3165505},
     zbl = {06373952},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/}
}
TY  - JOUR
AU  - Guo, Song-Tao
AU  - Hua, Xiao-Hui
AU  - Li, Yan-Tao
TI  - Hexavalent $(G,s)$-transitive graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 923
EP  - 931
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/
DO  - 10.1007/s10587-013-0062-9
LA  - en
ID  - 10_1007_s10587_013_0062_9
ER  - 
%0 Journal Article
%A Guo, Song-Tao
%A Hua, Xiao-Hui
%A Li, Yan-Tao
%T Hexavalent $(G,s)$-transitive graphs
%J Czechoslovak Mathematical Journal
%D 2013
%P 923-931
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/
%R 10.1007/s10587-013-0062-9
%G en
%F 10_1007_s10587_013_0062_9
Guo, Song-Tao; Hua, Xiao-Hui; Li, Yan-Tao. Hexavalent $(G,s)$-transitive graphs. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 923-931. doi : 10.1007/s10587-013-0062-9. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0062-9/

Cité par Sources :