Keywords: Laplacian matrix; Laplacian spectral radius; girth; unicyclic graph
@article{10_1007_s10587_013_0061_x,
author = {Patra, Kamal Lochan and Sahoo, Binod Kumar},
title = {Minimizing {Laplacian} spectral radius of unicyclic graphs with fixed girth},
journal = {Czechoslovak Mathematical Journal},
pages = {909--922},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0061-x},
mrnumber = {3165504},
zbl = {06373951},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0061-x/}
}
TY - JOUR AU - Patra, Kamal Lochan AU - Sahoo, Binod Kumar TI - Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth JO - Czechoslovak Mathematical Journal PY - 2013 SP - 909 EP - 922 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0061-x/ DO - 10.1007/s10587-013-0061-x LA - en ID - 10_1007_s10587_013_0061_x ER -
%0 Journal Article %A Patra, Kamal Lochan %A Sahoo, Binod Kumar %T Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth %J Czechoslovak Mathematical Journal %D 2013 %P 909-922 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0061-x/ %R 10.1007/s10587-013-0061-x %G en %F 10_1007_s10587_013_0061_x
Patra, Kamal Lochan; Sahoo, Binod Kumar. Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 909-922. doi: 10.1007/s10587-013-0061-x
[1] Fallat, S. M., Kirkland, S., Pati, S.: Minimizing algebraic connectivity over connected graphs with fixed girth. Discrete Math. 254 (2002), 115-142. | DOI | MR | Zbl
[2] Fallat, S. M., Kirkland, S., Pati, S.: Maximizing algebraic connectivity over unicyclic graphs. Linear Multilinear Algebra 51 (2003), 221-241. | DOI | MR | Zbl
[3] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | MR | Zbl
[4] Grone, R., Merris, R.: The Laplacian spectrum of a graph. II. SIAM J. Discrete Math. 7 (1994), 221-229. | DOI | MR | Zbl
[5] Grone, R., Merris, R., Sunder, V. S.: The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. | DOI | MR | Zbl
[6] Guo, J.-M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra Appl. 413 (2006), 59-71. | MR | Zbl
[7] Guo, J.-M.: The Laplacian spectral radius of a graph under perturbation. Comput. Math. Appl. 54 (2007), 709-720. | DOI | MR | Zbl
[8] Horn, R. A., Johnson, C. R.: Matrix Analysis. Reprinted with corrections Cambridge University Press, Cambridge (1990). | MR | Zbl
[9] Lal, A. K., Patra, K. L.: Maximizing Laplacian spectral radius over trees with fixed diameter. Linear Multilinear Algebra 55 (2007), 457-461. | DOI | MR | Zbl
[10] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl
[11] Merris, R.: A survey of graph Laplacians. Linear Multilinear Algebra 39 (1995), 19-31. | DOI | MR | Zbl
[12] Mohar, B.: The Laplacian spectrum of graphs. Alavi, Y. Graph Theory, Combinatorics and Applications, Kalamazoo, MI, 1988, Vol. 2 Wiley-Intersci. Publ. Wiley, New York 871-898 (1991). | MR | Zbl
Cité par Sources :