Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 909-922
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we consider the following problem: Over the class of all simple connected unicyclic graphs on $n$ vertices with girth $g$ ($n$, $g$ being fixed), which graph minimizes the Laplacian spectral radius? Let $U_{n,g}$ be the lollipop graph obtained by appending a pendent vertex of a path on $n-g$ $(n> g)$ vertices to a vertex of a cycle on $g\geq 3$ vertices. We prove that the graph $U_{n,g}$ uniquely minimizes the Laplacian spectral radius for $n\geq 2g-1$ when $g$ is even and for $n\geq 3g-1$ when $g$ is odd.
In this paper we consider the following problem: Over the class of all simple connected unicyclic graphs on $n$ vertices with girth $g$ ($n$, $g$ being fixed), which graph minimizes the Laplacian spectral radius? Let $U_{n,g}$ be the lollipop graph obtained by appending a pendent vertex of a path on $n-g$ $(n> g)$ vertices to a vertex of a cycle on $g\geq 3$ vertices. We prove that the graph $U_{n,g}$ uniquely minimizes the Laplacian spectral radius for $n\geq 2g-1$ when $g$ is even and for $n\geq 3g-1$ when $g$ is odd.
DOI :
10.1007/s10587-013-0061-x
Classification :
05C50
Keywords: Laplacian matrix; Laplacian spectral radius; girth; unicyclic graph
Keywords: Laplacian matrix; Laplacian spectral radius; girth; unicyclic graph
@article{10_1007_s10587_013_0061_x,
author = {Patra, Kamal Lochan and Sahoo, Binod Kumar},
title = {Minimizing {Laplacian} spectral radius of unicyclic graphs with fixed girth},
journal = {Czechoslovak Mathematical Journal},
pages = {909--922},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0061-x},
mrnumber = {3165504},
zbl = {06373951},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0061-x/}
}
TY - JOUR AU - Patra, Kamal Lochan AU - Sahoo, Binod Kumar TI - Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth JO - Czechoslovak Mathematical Journal PY - 2013 SP - 909 EP - 922 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0061-x/ DO - 10.1007/s10587-013-0061-x LA - en ID - 10_1007_s10587_013_0061_x ER -
%0 Journal Article %A Patra, Kamal Lochan %A Sahoo, Binod Kumar %T Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth %J Czechoslovak Mathematical Journal %D 2013 %P 909-922 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0061-x/ %R 10.1007/s10587-013-0061-x %G en %F 10_1007_s10587_013_0061_x
Patra, Kamal Lochan; Sahoo, Binod Kumar. Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 909-922. doi: 10.1007/s10587-013-0061-x
Cité par Sources :