Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 887-908
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem $$ ({\rm P}) \begin {cases} \dot {u}(t)+A(t)u(t)=f(t)\quad t\text {-a.e. on} [0,\tau ], u(0)=0, \end {cases} $$ where $A\colon [0,\tau ]\to \mathcal {L}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset {d}\to {\hookrightarrow }X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P).
We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem $$ ({\rm P}) \begin {cases} \dot {u}(t)+A(t)u(t)=f(t)\quad t\text {-a.e. on} [0,\tau ], u(0)=0, \end {cases} $$ where $A\colon [0,\tau ]\to \mathcal {L}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset {d}\to {\hookrightarrow }X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P).
DOI : 10.1007/s10587-013-0060-y
Classification : 35K90, 47D06
Keywords: maximal regularity; on-autonomous evolution equation; stability for linear evolution equation; integrability for linear evolution equation
@article{10_1007_s10587_013_0060_y,
     author = {Laasri, Hafida and El-Mennaoui, Omar},
     title = {Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {887--908},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0060-y},
     mrnumber = {3165503},
     zbl = {06373950},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0060-y/}
}
TY  - JOUR
AU  - Laasri, Hafida
AU  - El-Mennaoui, Omar
TI  - Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 887
EP  - 908
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0060-y/
DO  - 10.1007/s10587-013-0060-y
LA  - en
ID  - 10_1007_s10587_013_0060_y
ER  - 
%0 Journal Article
%A Laasri, Hafida
%A El-Mennaoui, Omar
%T Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity
%J Czechoslovak Mathematical Journal
%D 2013
%P 887-908
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0060-y/
%R 10.1007/s10587-013-0060-y
%G en
%F 10_1007_s10587_013_0060_y
Laasri, Hafida; El-Mennaoui, Omar. Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 887-908. doi: 10.1007/s10587-013-0060-y

[1] Amann, H.: Maximal regularity for nonautonomous evolution equations. Adv. Nonlinear Stud. 4 (2004), 417-430. | DOI | MR | Zbl

[2] Arendt, W.: Semigroups and evolution equations: Functional calculus, regularity and kernel estimates. Handbook of Differential Equations: Evolutionary Equations vol. I C. M. Dafermos et al. Elsevier/North-Holland Amsterdam (2004), 1-85. | MR | Zbl

[3] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96. Birkhäuser Basel (2001). | MR

[4] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311-343. | DOI | MR | Zbl

[5] Arendt, W., Bu, S.: Tools for maximal regularity. Math. Proc. Camb. Philos. Soc. 134 (2003), 317-336. | DOI | MR | Zbl

[6] Arendt, W., Bu, S.: Fourier series in Banach spaces and maximal regularity. Vector Measures, Integration and Related Topics. Selected papers from the 3rd conference on vector measures and integration, Eichsttt, Germany, September 24-26, 2008. Operator Theory: Advances and Applications 201 Birkhäuser Basel (2010), 21-39. | MR | Zbl

[7] Arendt, W., Chill, R., Fornaro, S., Poupaud, C.: $L^p$-maximal regularity for nonautonomous evolution equations. J. Differ. Equations 237 (2007), 1-26. | DOI | MR | Zbl

[8] Cannarsa, P., Vespri, V.: On maximal $L^{p}$ regularity for the abstract Cauchy problem. Boll. Unione Mat. Ital., VI. Ser., B 5 (1986), 165-175. | MR

[9] Prato, G. Da, Grisvard, P.: Sommes d'opérateurs linéaires et équations différentielles opérationnelles. J. Math. Pur. Appl., IX. Sér. 54 (1975), 305-387 French. | MR | Zbl

[10] Simon, L. De: Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223 Italian. | MR | Zbl

[11] Denk, R., Hieber, M., Prüss, J.: $\mathcal{R}$-boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Mem. Am. Math. Soc. Providence RI 166 (2003). | MR

[12] Dore, G.: $L^{p}$-regularity for abstract differential equations. Functional Analysis and Related Topics, 1991. Proceedings of the international conference in memory of Professor Kôsaku Yosida held at RIMS, Kyoto University, Japan, July 29--Aug. 2, 1991. Lect. Notes Math. 1540 Springer Berlin (1993), 25-38. | MR

[13] El-Mennaoui, O., Keyantuo, V., Laasri, H.: Infinitesimal product of semigroups. Ulmer Seminare 16 (2011), 219-230.

[14] Hieber, M., Monniaux, S.: Heat kernels and maximal $L_p-L_q$ estimates: The non-autonomous case. J. Fourier Anal. Appl. 6 (2000), 468-481. | DOI | Zbl

[15] Hieber, M., Monniaux, S.: Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations. Proc. Am. Math. Soc. 128 (2000), 1047-1053. | DOI | MR | Zbl

[16] Kalton, N. J., Lancien, G.: A solution to the problem of $L^p$-maximal regularity. Math. Z. 235 (2000), 559-568. | DOI | MR | Zbl

[17] Kunstmann, P. C., Weis, L.: Maximal $L^p$-regularity for parabolic equations, Fourier multiplier theorems and $H^{\infty}$-functional calculus. Functional Analytic Methods for Evolution Equations. Based on lectures given at the autumn school on evolution equations and semigroups, Levico Terme, Trento, Italy, October 28--November 2, 2001. Lecture Notes in Mathematics 1855 M. Iannelli, et al. Springer Berlin (2004), 65-311. | DOI | MR | Zbl

[18] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications 16. Birkhäuser Basel (1995). | MR

[19] Portal, P., Štrkalj, Ž.: Pseudodifferential operators on Bochner spaces and an application. Math. Z. 253 (2006), 805-819. | DOI | MR | Zbl

[20] Prüss, J., Schnaubelt, R.: Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time. J. Math. Anal. Appl. 256 (2001), 405-430. | DOI | MR | Zbl

[21] Slavík, A.: Product Integration, Its History and Applications. History of Mathematics 29, Jindřich Nečas Center for Mathematical Modeling Lecture Notes 1. Matfyzpress Praha (2007). | MR

[22] Sobolevskij, P. E.: Coerciveness inequalities for abstract parabolic equations. Sov. Math., Dokl. 5 (1964), 894-897

Cité par Sources :