Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 887-908
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem $$ ({\rm P}) \begin {cases} \dot {u}(t)+A(t)u(t)=f(t)\quad t\text {-a.e. on} [0,\tau ], u(0)=0, \end {cases} $$ where $A\colon [0,\tau ]\to \mathcal {L}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset {d}\to {\hookrightarrow }X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P).
We study stability and integrability of linear non-autonomous evolutionary Cauchy-problem $$ ({\rm P}) \begin {cases} \dot {u}(t)+A(t)u(t)=f(t)\quad t\text {-a.e. on} [0,\tau ], u(0)=0, \end {cases} $$ where $A\colon [0,\tau ]\to \mathcal {L}(X,D)$ is a bounded and strongly measurable function and $X$, $D$ are Banach spaces such that $D\underset {d}\to {\hookrightarrow }X$. Our main concern is to characterize $L^p$-maximal regularity and to give an explicit approximation of the problem (P).
DOI :
10.1007/s10587-013-0060-y
Classification :
35K90, 47D06
Keywords: maximal regularity; on-autonomous evolution equation; stability for linear evolution equation; integrability for linear evolution equation
Keywords: maximal regularity; on-autonomous evolution equation; stability for linear evolution equation; integrability for linear evolution equation
@article{10_1007_s10587_013_0060_y,
author = {Laasri, Hafida and El-Mennaoui, Omar},
title = {Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity},
journal = {Czechoslovak Mathematical Journal},
pages = {887--908},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0060-y},
mrnumber = {3165503},
zbl = {06373950},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0060-y/}
}
TY - JOUR AU - Laasri, Hafida AU - El-Mennaoui, Omar TI - Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity JO - Czechoslovak Mathematical Journal PY - 2013 SP - 887 EP - 908 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0060-y/ DO - 10.1007/s10587-013-0060-y LA - en ID - 10_1007_s10587_013_0060_y ER -
%0 Journal Article %A Laasri, Hafida %A El-Mennaoui, Omar %T Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity %J Czechoslovak Mathematical Journal %D 2013 %P 887-908 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0060-y/ %R 10.1007/s10587-013-0060-y %G en %F 10_1007_s10587_013_0060_y
Laasri, Hafida; El-Mennaoui, Omar. Stability for non-autonomous linear evolution equations with $L^p$-maximal regularity. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 887-908. doi: 10.1007/s10587-013-0060-y
Cité par Sources :