Keywords: Artinian module; cofinite module; Krull dimension; local cohomology
@article{10_1007_s10587_013_0059_4,
author = {Sadeghi, Behrouz and Bahmanpour, Kamal and A'zami, Jafar},
title = {Artinian cofinite modules over complete {Noetherian} local rings},
journal = {Czechoslovak Mathematical Journal},
pages = {877--885},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0059-4},
mrnumber = {3165502},
zbl = {06282116},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0059-4/}
}
TY - JOUR AU - Sadeghi, Behrouz AU - Bahmanpour, Kamal AU - A'zami, Jafar TI - Artinian cofinite modules over complete Noetherian local rings JO - Czechoslovak Mathematical Journal PY - 2013 SP - 877 EP - 885 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0059-4/ DO - 10.1007/s10587-013-0059-4 LA - en ID - 10_1007_s10587_013_0059_4 ER -
%0 Journal Article %A Sadeghi, Behrouz %A Bahmanpour, Kamal %A A'zami, Jafar %T Artinian cofinite modules over complete Noetherian local rings %J Czechoslovak Mathematical Journal %D 2013 %P 877-885 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0059-4/ %R 10.1007/s10587-013-0059-4 %G en %F 10_1007_s10587_013_0059_4
Sadeghi, Behrouz; Bahmanpour, Kamal; A'zami, Jafar. Artinian cofinite modules over complete Noetherian local rings. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 877-885. doi: 10.1007/s10587-013-0059-4
[1] Abazari, R., Bahmanpour, K.: Cofiniteness of extension functors of cofinite modules. J. Algebra 330 (2011), 507-516. | DOI | MR | Zbl
[2] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension. J. Algebra. 321 (2009), 1997-2011. | DOI | MR | Zbl
[3] Bahmanpour, K., Naghipour, R., Sedghi, M.: On the category of cofinite modules which is Abelian. (to appear) in Proc. Am. Math. Soc.
[4] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). | MR | Zbl
[5] Delfino, D.: On the cofiniteness of local cohomology modules. Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. | DOI | MR | Zbl
[6] Delfino, D., Marley, T.: Cofinite modules and local cohomology. J. Pure Appl. Algebra 121 (1997), 45-52. | DOI | MR | Zbl
[7] Grothendieck, A.: Local Cohomology. A seminar given by A. Grothendieck, Harvard University, Fall 1961. Notes by R. Hartshorne. Lecture Notes in Mathematics 41 Springer, Berlin (1967). | MR | Zbl
[8] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 (1970), 145-164. | DOI | MR | Zbl
[9] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules. Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. | DOI | MR | Zbl
[10] Irani, Y., Bahmanpour, K.: Finiteness properties of extension functors of cofinite modules. Bull. Korean Math. Soc. 50 (2013), 649-657. | DOI | MR
[11] Kawasaki, K.-I.: On the finiteness of Bass numbers of local cohomology modules. Proc. Am. Math. Soc. 124 (1996), 3275-3279. | DOI | MR | Zbl
[12] Kawasaki, K.-I.: On a category of cofinite modules which is abelian. Math. Z. 269 (2011), 587-608. | DOI | MR | Zbl
[13] Matsumura, H.: Commutative Ring Theory. Transl. from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1986). | MR | Zbl
[14] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 (2005), 649-668. | DOI | MR | Zbl
[15] Melkersson, L.: Properties of cofinite modules and applications to local cohomology. Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. | DOI | MR | Zbl
[16] Yoshida, K. I.: Cofiniteness of local cohomology modules for ideals of dimension one. Nagoya Math. J. 147 (1997), 179-191. | DOI | MR | Zbl
Cité par Sources :