Artinian cofinite modules over complete Noetherian local rings
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 877-885
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $(R,\mathfrak {m})$ be a complete Noetherian local ring, $I$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module. In this paper it is shown that if $\mathfrak p$ is a prime ideal of $R$ such that $\dim R/\mathfrak p=1$ and $(0:_M\mathfrak p)$ is not finitely generated and for each $i\geq 2$ the $R$-module ${\rm Ext}^i_R(M,R/\mathfrak p)$ is of finite length, then the $R$-module ${\rm Ext}^1_R(M,R/\mathfrak p)$ is not of finite length. Using this result, it is shown that for all finitely generated $R$-modules $N$ with $\operatorname {Supp}(N)\subseteq V(I)$ and for all integers $i\geq 0$, the $R$-modules ${\rm Ext}^i_R(N,M)$ are of finite length, if and only if, for all finitely generated $R$-modules $N$ with $\operatorname {Supp}(N)\subseteq V(I)$ and for all integers $i\geq 0$, the $R$-modules ${\rm Ext}^i_R(M,N)$ are of finite length.
Let $(R,\mathfrak {m})$ be a complete Noetherian local ring, $I$ an ideal of $R$ and $M$ a nonzero Artinian $R$-module. In this paper it is shown that if $\mathfrak p$ is a prime ideal of $R$ such that $\dim R/\mathfrak p=1$ and $(0:_M\mathfrak p)$ is not finitely generated and for each $i\geq 2$ the $R$-module ${\rm Ext}^i_R(M,R/\mathfrak p)$ is of finite length, then the $R$-module ${\rm Ext}^1_R(M,R/\mathfrak p)$ is not of finite length. Using this result, it is shown that for all finitely generated $R$-modules $N$ with $\operatorname {Supp}(N)\subseteq V(I)$ and for all integers $i\geq 0$, the $R$-modules ${\rm Ext}^i_R(N,M)$ are of finite length, if and only if, for all finitely generated $R$-modules $N$ with $\operatorname {Supp}(N)\subseteq V(I)$ and for all integers $i\geq 0$, the $R$-modules ${\rm Ext}^i_R(M,N)$ are of finite length.
DOI : 10.1007/s10587-013-0059-4
Classification : 13D45, 13E10, 14B15
Keywords: Artinian module; cofinite module; Krull dimension; local cohomology
@article{10_1007_s10587_013_0059_4,
     author = {Sadeghi, Behrouz and Bahmanpour, Kamal and A'zami, Jafar},
     title = {Artinian cofinite modules over complete {Noetherian} local rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {877--885},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0059-4},
     mrnumber = {3165502},
     zbl = {06282116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0059-4/}
}
TY  - JOUR
AU  - Sadeghi, Behrouz
AU  - Bahmanpour, Kamal
AU  - A'zami, Jafar
TI  - Artinian cofinite modules over complete Noetherian local rings
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 877
EP  - 885
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0059-4/
DO  - 10.1007/s10587-013-0059-4
LA  - en
ID  - 10_1007_s10587_013_0059_4
ER  - 
%0 Journal Article
%A Sadeghi, Behrouz
%A Bahmanpour, Kamal
%A A'zami, Jafar
%T Artinian cofinite modules over complete Noetherian local rings
%J Czechoslovak Mathematical Journal
%D 2013
%P 877-885
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0059-4/
%R 10.1007/s10587-013-0059-4
%G en
%F 10_1007_s10587_013_0059_4
Sadeghi, Behrouz; Bahmanpour, Kamal; A'zami, Jafar. Artinian cofinite modules over complete Noetherian local rings. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 877-885. doi: 10.1007/s10587-013-0059-4

[1] Abazari, R., Bahmanpour, K.: Cofiniteness of extension functors of cofinite modules. J. Algebra 330 (2011), 507-516. | DOI | MR | Zbl

[2] Bahmanpour, K., Naghipour, R.: Cofiniteness of local cohomology modules for ideals of small dimension. J. Algebra. 321 (2009), 1997-2011. | DOI | MR | Zbl

[3] Bahmanpour, K., Naghipour, R., Sedghi, M.: On the category of cofinite modules which is Abelian. (to appear) in Proc. Am. Math. Soc.

[4] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60 Cambridge University Press, Cambridge (1998). | MR | Zbl

[5] Delfino, D.: On the cofiniteness of local cohomology modules. Math. Proc. Camb. Philos. Soc. 115 (1994), 79-84. | DOI | MR | Zbl

[6] Delfino, D., Marley, T.: Cofinite modules and local cohomology. J. Pure Appl. Algebra 121 (1997), 45-52. | DOI | MR | Zbl

[7] Grothendieck, A.: Local Cohomology. A seminar given by A. Grothendieck, Harvard University, Fall 1961. Notes by R. Hartshorne. Lecture Notes in Mathematics 41 Springer, Berlin (1967). | MR | Zbl

[8] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 (1970), 145-164. | DOI | MR | Zbl

[9] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules. Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. | DOI | MR | Zbl

[10] Irani, Y., Bahmanpour, K.: Finiteness properties of extension functors of cofinite modules. Bull. Korean Math. Soc. 50 (2013), 649-657. | DOI | MR

[11] Kawasaki, K.-I.: On the finiteness of Bass numbers of local cohomology modules. Proc. Am. Math. Soc. 124 (1996), 3275-3279. | DOI | MR | Zbl

[12] Kawasaki, K.-I.: On a category of cofinite modules which is abelian. Math. Z. 269 (2011), 587-608. | DOI | MR | Zbl

[13] Matsumura, H.: Commutative Ring Theory. Transl. from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics 8 Cambridge University Press, Cambridge (1986). | MR | Zbl

[14] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 (2005), 649-668. | DOI | MR | Zbl

[15] Melkersson, L.: Properties of cofinite modules and applications to local cohomology. Math. Proc. Camb. Philos. Soc. 125 (1999), 417-423. | DOI | MR | Zbl

[16] Yoshida, K. I.: Cofiniteness of local cohomology modules for ideals of dimension one. Nagoya Math. J. 147 (1997), 179-191. | DOI | MR | Zbl

Cité par Sources :