Wakamatsu tilting modules with finite injective dimension
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 865-876.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S={\rm End}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\geq 0$, we prove that ${\rm l.id}_R(\omega ) = {\rm r.id}_S(\omega )\leq n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.
DOI : 10.1007/s10587-013-0058-5
Classification : 16E10, 16E30
Keywords: Wakamatsu tilting module; $\omega $-$k$-torsionfree module; $\mathcal {X}$-resolution dimension; injective dimension; $\omega $-torsionless property
@article{10_1007_s10587_013_0058_5,
     author = {Zhao, Guoqiang and Yin, Lirong},
     title = {Wakamatsu tilting modules with finite injective dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {865--876},
     publisher = {mathdoc},
     volume = {63},
     number = {4},
     year = {2013},
     doi = {10.1007/s10587-013-0058-5},
     mrnumber = {3165501},
     zbl = {1299.16011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/}
}
TY  - JOUR
AU  - Zhao, Guoqiang
AU  - Yin, Lirong
TI  - Wakamatsu tilting modules with finite injective dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 865
EP  - 876
VL  - 63
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/
DO  - 10.1007/s10587-013-0058-5
LA  - en
ID  - 10_1007_s10587_013_0058_5
ER  - 
%0 Journal Article
%A Zhao, Guoqiang
%A Yin, Lirong
%T Wakamatsu tilting modules with finite injective dimension
%J Czechoslovak Mathematical Journal
%D 2013
%P 865-876
%V 63
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/
%R 10.1007/s10587-013-0058-5
%G en
%F 10_1007_s10587_013_0058_5
Zhao, Guoqiang; Yin, Lirong. Wakamatsu tilting modules with finite injective dimension. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 865-876. doi : 10.1007/s10587-013-0058-5. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/

Cité par Sources :