Keywords: Wakamatsu tilting module; $\omega $-$k$-torsionfree module; $\mathcal {X}$-resolution dimension; injective dimension; $\omega $-torsionless property
@article{10_1007_s10587_013_0058_5,
author = {Zhao, Guoqiang and Yin, Lirong},
title = {Wakamatsu tilting modules with finite injective dimension},
journal = {Czechoslovak Mathematical Journal},
pages = {865--876},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0058-5},
mrnumber = {3165501},
zbl = {1299.16011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/}
}
TY - JOUR AU - Zhao, Guoqiang AU - Yin, Lirong TI - Wakamatsu tilting modules with finite injective dimension JO - Czechoslovak Mathematical Journal PY - 2013 SP - 865 EP - 876 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/ DO - 10.1007/s10587-013-0058-5 LA - en ID - 10_1007_s10587_013_0058_5 ER -
%0 Journal Article %A Zhao, Guoqiang %A Yin, Lirong %T Wakamatsu tilting modules with finite injective dimension %J Czechoslovak Mathematical Journal %D 2013 %P 865-876 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/ %R 10.1007/s10587-013-0058-5 %G en %F 10_1007_s10587_013_0058_5
Zhao, Guoqiang; Yin, Lirong. Wakamatsu tilting modules with finite injective dimension. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 865-876. doi: 10.1007/s10587-013-0058-5
[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94 AMS, Providence (1969). | DOI | MR | Zbl
[2] Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. | MR | Zbl
[3] Auslander, M., Reiten, I.: Cohen-Macaulay and Gorenstein Artin algebras. Representation Theory of Finite Groups and Finite-Dimensional Algebras G. O. Michler et al. Proc. Conf., Bielefeld/Ger. 1991, Prog. Math. 95 Birkhäuser, Basel (1991), 221-245. | MR | Zbl
[4] Beligiannis, A., Reiten, I.: Homological and Homotopical Aspects of Torsion Theories. Memoirs of the American Mathematical Society 883 AMS, Providence (2007). | MR | Zbl
[5] Bennis, D., Mahdou, N.: Global Gorenstein dimensions. Proc. Am. Math. Soc. 138 (2010), 461-465. | DOI | MR | Zbl
[6] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. De Gruyter Expositions in Mathematics 41 Walter de Gruyter, Berlin (2006). | MR | Zbl
[7] Hoshino, M.: Algebras of finite self-injective dimension. Proc. Am. Math. Soc. 112 (1991), 619-622. | DOI | MR | Zbl
[8] Huang, Z.: $\omega$-$k$-torsionfree modules and $\omega$-left approximation dimension. Sci. China, Ser. A 44 (2001), 184-192. | DOI | MR | Zbl
[9] Huang, Z.: Generalized tilting modules with finite injective dimension. J. Algebra 311 (2007), 619-634. | DOI | MR | Zbl
[10] Huang, Z.: Selforthogonal modules with finite injective dimension III. Algebr. Represent. Theory 12 (2009), 371-384. | DOI | MR | Zbl
[11] Huang, Z.: Wakamatsu tilting modules, $U$-dominant dimension, and $k$-Gorenstein modules. Abelian Groups, Rings, Modules, and Homological Algebra Lecture Notes in Pure and Applied Mathematics 249. Selected papers of a conference on the occasion of Edgar Earle Enochs' 72nd birthday, Auburn, AL, USA, September 9-11, 2004 P. Goeters et al. Chapman & Hall/CRC (2006), 183-202. | MR | Zbl
[12] Huang, Z., Tang, G.: Self-orthogonal modules over coherent rings. J. Pure Appl. Algebra 161 (2001), 167-176. | DOI | MR | Zbl
[13] Mantese, F., Reiten, I.: Wakamatsu tilting modules. J. Algebra 278 (2004), 532-552. | DOI | MR | Zbl
[14] Rotman, J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics 85 Academic Press, New York (1979). | MR | Zbl
[15] Wakamatsu, T.: Tilting modules and Auslander's Gorenstein property. J. Algebra 275 (2004), 3-39. | DOI | MR | Zbl
Cité par Sources :