Wakamatsu tilting modules with finite injective dimension
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 865-876
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S={\rm End}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\geq 0$, we prove that ${\rm l.id}_R(\omega ) = {\rm r.id}_S(\omega )\leq n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.
Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S={\rm End}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\geq 0$, we prove that ${\rm l.id}_R(\omega ) = {\rm r.id}_S(\omega )\leq n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.
DOI :
10.1007/s10587-013-0058-5
Classification :
16E10, 16E30
Keywords: Wakamatsu tilting module; $\omega $-$k$-torsionfree module; $\mathcal {X}$-resolution dimension; injective dimension; $\omega $-torsionless property
Keywords: Wakamatsu tilting module; $\omega $-$k$-torsionfree module; $\mathcal {X}$-resolution dimension; injective dimension; $\omega $-torsionless property
@article{10_1007_s10587_013_0058_5,
author = {Zhao, Guoqiang and Yin, Lirong},
title = {Wakamatsu tilting modules with finite injective dimension},
journal = {Czechoslovak Mathematical Journal},
pages = {865--876},
year = {2013},
volume = {63},
number = {4},
doi = {10.1007/s10587-013-0058-5},
mrnumber = {3165501},
zbl = {1299.16011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/}
}
TY - JOUR AU - Zhao, Guoqiang AU - Yin, Lirong TI - Wakamatsu tilting modules with finite injective dimension JO - Czechoslovak Mathematical Journal PY - 2013 SP - 865 EP - 876 VL - 63 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/ DO - 10.1007/s10587-013-0058-5 LA - en ID - 10_1007_s10587_013_0058_5 ER -
%0 Journal Article %A Zhao, Guoqiang %A Yin, Lirong %T Wakamatsu tilting modules with finite injective dimension %J Czechoslovak Mathematical Journal %D 2013 %P 865-876 %V 63 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/ %R 10.1007/s10587-013-0058-5 %G en %F 10_1007_s10587_013_0058_5
Zhao, Guoqiang; Yin, Lirong. Wakamatsu tilting modules with finite injective dimension. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 865-876. doi: 10.1007/s10587-013-0058-5
Cité par Sources :