Wakamatsu tilting modules with finite injective dimension
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 865-876
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S={\rm End}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\geq 0$, we prove that ${\rm l.id}_R(\omega ) = {\rm r.id}_S(\omega )\leq n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.
Let $R$ be a left Noetherian ring, $S$ a right Noetherian ring and $_R\omega $ a Wakamatsu tilting module with $S={\rm End}(_R\omega )$. We introduce the notion of the $\omega $-torsionfree dimension of finitely generated $R$-modules and give some criteria for computing it. For any $n\geq 0$, we prove that ${\rm l.id}_R(\omega ) = {\rm r.id}_S(\omega )\leq n$ if and only if every finitely generated left $R$-module and every finitely generated right $S$-module have $\omega $-torsionfree dimension at most $n$, if and only if every finitely generated left $R$-module (or right $S$-module) has generalized Gorenstein dimension at most $n$. Then some examples and applications are given.
DOI : 10.1007/s10587-013-0058-5
Classification : 16E10, 16E30
Keywords: Wakamatsu tilting module; $\omega $-$k$-torsionfree module; $\mathcal {X}$-resolution dimension; injective dimension; $\omega $-torsionless property
@article{10_1007_s10587_013_0058_5,
     author = {Zhao, Guoqiang and Yin, Lirong},
     title = {Wakamatsu tilting modules with finite injective dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {865--876},
     year = {2013},
     volume = {63},
     number = {4},
     doi = {10.1007/s10587-013-0058-5},
     mrnumber = {3165501},
     zbl = {1299.16011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/}
}
TY  - JOUR
AU  - Zhao, Guoqiang
AU  - Yin, Lirong
TI  - Wakamatsu tilting modules with finite injective dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 865
EP  - 876
VL  - 63
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/
DO  - 10.1007/s10587-013-0058-5
LA  - en
ID  - 10_1007_s10587_013_0058_5
ER  - 
%0 Journal Article
%A Zhao, Guoqiang
%A Yin, Lirong
%T Wakamatsu tilting modules with finite injective dimension
%J Czechoslovak Mathematical Journal
%D 2013
%P 865-876
%V 63
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0058-5/
%R 10.1007/s10587-013-0058-5
%G en
%F 10_1007_s10587_013_0058_5
Zhao, Guoqiang; Yin, Lirong. Wakamatsu tilting modules with finite injective dimension. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 4, pp. 865-876. doi: 10.1007/s10587-013-0058-5

[1] Auslander, M., Bridger, M.: Stable Module Theory. Memoirs of the American Mathematical Society 94 AMS, Providence (1969). | DOI | MR | Zbl

[2] Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen-Macaulay approximations. Mém. Soc. Math. Fr., Nouv. Sér. 38 (1989), 5-37. | MR | Zbl

[3] Auslander, M., Reiten, I.: Cohen-Macaulay and Gorenstein Artin algebras. Representation Theory of Finite Groups and Finite-Dimensional Algebras G. O. Michler et al. Proc. Conf., Bielefeld/Ger. 1991, Prog. Math. 95 Birkhäuser, Basel (1991), 221-245. | MR | Zbl

[4] Beligiannis, A., Reiten, I.: Homological and Homotopical Aspects of Torsion Theories. Memoirs of the American Mathematical Society 883 AMS, Providence (2007). | MR | Zbl

[5] Bennis, D., Mahdou, N.: Global Gorenstein dimensions. Proc. Am. Math. Soc. 138 (2010), 461-465. | DOI | MR | Zbl

[6] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. De Gruyter Expositions in Mathematics 41 Walter de Gruyter, Berlin (2006). | MR | Zbl

[7] Hoshino, M.: Algebras of finite self-injective dimension. Proc. Am. Math. Soc. 112 (1991), 619-622. | DOI | MR | Zbl

[8] Huang, Z.: $\omega$-$k$-torsionfree modules and $\omega$-left approximation dimension. Sci. China, Ser. A 44 (2001), 184-192. | DOI | MR | Zbl

[9] Huang, Z.: Generalized tilting modules with finite injective dimension. J. Algebra 311 (2007), 619-634. | DOI | MR | Zbl

[10] Huang, Z.: Selforthogonal modules with finite injective dimension III. Algebr. Represent. Theory 12 (2009), 371-384. | DOI | MR | Zbl

[11] Huang, Z.: Wakamatsu tilting modules, $U$-dominant dimension, and $k$-Gorenstein modules. Abelian Groups, Rings, Modules, and Homological Algebra Lecture Notes in Pure and Applied Mathematics 249. Selected papers of a conference on the occasion of Edgar Earle Enochs' 72nd birthday, Auburn, AL, USA, September 9-11, 2004 P. Goeters et al. Chapman & Hall/CRC (2006), 183-202. | MR | Zbl

[12] Huang, Z., Tang, G.: Self-orthogonal modules over coherent rings. J. Pure Appl. Algebra 161 (2001), 167-176. | DOI | MR | Zbl

[13] Mantese, F., Reiten, I.: Wakamatsu tilting modules. J. Algebra 278 (2004), 532-552. | DOI | MR | Zbl

[14] Rotman, J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics 85 Academic Press, New York (1979). | MR | Zbl

[15] Wakamatsu, T.: Tilting modules and Auslander's Gorenstein property. J. Algebra 275 (2004), 3-39. | DOI | MR | Zbl

Cité par Sources :