The classification of two step nilpotent complex Lie algebras of dimension $8$
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 847-863
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A Lie algebra $\mathfrak {g}$ is called two step nilpotent if $\mathfrak {g}$ is not abelian and $[\mathfrak {g},\mathfrak {g}]$ lies in the center of $\mathfrak {g}$. Two step nilpotent Lie algebras are useful in the study of some geometric problems, such as commutative Riemannian manifolds, weakly symmetric Riemannian manifolds, homogeneous Einstein manifolds, etc. Moreover, the classification of two-step nilpotent Lie algebras has been an important problem in Lie theory. In this paper, we study two step nilpotent indecomposable Lie algebras of dimension $8$ over the field of complex numbers. Based on the study of minimal systems of generators, we choose an appropriate basis and give a complete classification of two step nilpotent Lie algebras of dimension $8$.
A Lie algebra $\mathfrak {g}$ is called two step nilpotent if $\mathfrak {g}$ is not abelian and $[\mathfrak {g},\mathfrak {g}]$ lies in the center of $\mathfrak {g}$. Two step nilpotent Lie algebras are useful in the study of some geometric problems, such as commutative Riemannian manifolds, weakly symmetric Riemannian manifolds, homogeneous Einstein manifolds, etc. Moreover, the classification of two-step nilpotent Lie algebras has been an important problem in Lie theory. In this paper, we study two step nilpotent indecomposable Lie algebras of dimension $8$ over the field of complex numbers. Based on the study of minimal systems of generators, we choose an appropriate basis and give a complete classification of two step nilpotent Lie algebras of dimension $8$.
DOI : 10.1007/s10587-013-0057-6
Classification : 17B05, 17B30, 17B40
Keywords: two-step nilpotent Lie algebra; base; minimal system of generators; related sets; $H$-minimal system of generators
@article{10_1007_s10587_013_0057_6,
     author = {Yan, Zaili and Deng, Shaoqiang},
     title = {The classification of two step nilpotent complex {Lie} algebras of dimension $8$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {847--863},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0057-6},
     mrnumber = {3125659},
     zbl = {06282115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0057-6/}
}
TY  - JOUR
AU  - Yan, Zaili
AU  - Deng, Shaoqiang
TI  - The classification of two step nilpotent complex Lie algebras of dimension $8$
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 847
EP  - 863
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0057-6/
DO  - 10.1007/s10587-013-0057-6
LA  - en
ID  - 10_1007_s10587_013_0057_6
ER  - 
%0 Journal Article
%A Yan, Zaili
%A Deng, Shaoqiang
%T The classification of two step nilpotent complex Lie algebras of dimension $8$
%J Czechoslovak Mathematical Journal
%D 2013
%P 847-863
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0057-6/
%R 10.1007/s10587-013-0057-6
%G en
%F 10_1007_s10587_013_0057_6
Yan, Zaili; Deng, Shaoqiang. The classification of two step nilpotent complex Lie algebras of dimension $8$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 847-863. doi: 10.1007/s10587-013-0057-6

[1] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie nilpotentes complexes de dimension $7$. (Classification of nilpotent complex Lie algebras of dimension $7$). Arch. Math. 52 (1989), 175-185 French. | DOI | MR | Zbl

[2] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie filiformes de dimension $8$. (Classification of filiform Lie algebras in dimension $8$). Arch. Math. 50 (1988), 511-525 French. | DOI | MR | Zbl

[3] Carles, R.: Sur la structure des algèbres de Lie rigides. (On the structure of the rigid Lie algebras). Ann. Inst. Fourier 34 (1984), 65-82. | DOI | MR | Zbl

[4] Favre, G.: Systeme de poids sur une algèbre de Lie nilpotente. Manuscr. Math. 9 (1973), 53-90. | DOI | MR | Zbl

[5] Galitski, L. Y., Timashev, D. A.: On classification of metabelian Lie algebras. J. Lie Theory 9 (1999), 125-156. | MR | Zbl

[6] Gauger, M. A.: On the classification of metabelian Lie algebras. Trans. Am. Math. Soc. 179 (1973), 293-329. | DOI | MR | Zbl

[7] Gong, M. P.: Classification of Nilpotent Lie Algebras of Dimension $7$ (Over Algebraically Closed Fields and $R$). Ph.D. Thesis University of Waterloo, Waterloo (1998). | MR

[8] Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras. Mathematics and its Applications 361. Kluwer Academic Publishers Dordrecht (1996). | MR

[9] Leger, G., Luks, E.: On derivations and holomorphs of nilpotent Lie algebras. Nagoya Math. J. 44 (1971), 39-50. | DOI | MR | Zbl

[10] Ren, B., Meng, D.: Some $2$-step nilpotent Lie algebras. I. Linear Algebra Appl. 338 (2001), 77-98. | DOI | MR | Zbl

[11] Ren, B., Zhu, L. S.: Classification of $2$-step nilpotent Lie algebras of dimension $8$ with $2$-dimensional center. Commun. Algebra 39 (2011), 2068-2081. | DOI | MR

[12] Revoy, P.: Algèbres de Lie metabeliennes. Ann. Fac. Sci. Toulouse, V. Ser., Math. 2 (1980), 93-100 French. | DOI | MR | Zbl

[13] Santharoubane, L. J.: Kac-Moody Lie algebra and the classification of nilpotent Lie algebras of maximal rank. Can. J. Math. 34 (1982), 1215-1239. | DOI | MR

[14] Seeley, C.: $7$-dimensional nilpotent Lie algebras. Trans. Am. Math. Soc. 335 (1993), 479-496. | MR | Zbl

[15] Umlauf, K. A.: Ueber den Zusammenhang der endlichen continuirlichen Transformationsgruppen, insbesondere der Gruppen vom Range Null. Ph.D. Thesis University of Leipzig (1891), German.

Cité par Sources :