Keywords: two-step nilpotent Lie algebra; base; minimal system of generators; related sets; $H$-minimal system of generators
@article{10_1007_s10587_013_0057_6,
author = {Yan, Zaili and Deng, Shaoqiang},
title = {The classification of two step nilpotent complex {Lie} algebras of dimension $8$},
journal = {Czechoslovak Mathematical Journal},
pages = {847--863},
year = {2013},
volume = {63},
number = {3},
doi = {10.1007/s10587-013-0057-6},
mrnumber = {3125659},
zbl = {06282115},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0057-6/}
}
TY - JOUR AU - Yan, Zaili AU - Deng, Shaoqiang TI - The classification of two step nilpotent complex Lie algebras of dimension $8$ JO - Czechoslovak Mathematical Journal PY - 2013 SP - 847 EP - 863 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0057-6/ DO - 10.1007/s10587-013-0057-6 LA - en ID - 10_1007_s10587_013_0057_6 ER -
%0 Journal Article %A Yan, Zaili %A Deng, Shaoqiang %T The classification of two step nilpotent complex Lie algebras of dimension $8$ %J Czechoslovak Mathematical Journal %D 2013 %P 847-863 %V 63 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0057-6/ %R 10.1007/s10587-013-0057-6 %G en %F 10_1007_s10587_013_0057_6
Yan, Zaili; Deng, Shaoqiang. The classification of two step nilpotent complex Lie algebras of dimension $8$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 847-863. doi: 10.1007/s10587-013-0057-6
[1] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie nilpotentes complexes de dimension $7$. (Classification of nilpotent complex Lie algebras of dimension $7$). Arch. Math. 52 (1989), 175-185 French. | DOI | MR | Zbl
[2] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie filiformes de dimension $8$. (Classification of filiform Lie algebras in dimension $8$). Arch. Math. 50 (1988), 511-525 French. | DOI | MR | Zbl
[3] Carles, R.: Sur la structure des algèbres de Lie rigides. (On the structure of the rigid Lie algebras). Ann. Inst. Fourier 34 (1984), 65-82. | DOI | MR | Zbl
[4] Favre, G.: Systeme de poids sur une algèbre de Lie nilpotente. Manuscr. Math. 9 (1973), 53-90. | DOI | MR | Zbl
[5] Galitski, L. Y., Timashev, D. A.: On classification of metabelian Lie algebras. J. Lie Theory 9 (1999), 125-156. | MR | Zbl
[6] Gauger, M. A.: On the classification of metabelian Lie algebras. Trans. Am. Math. Soc. 179 (1973), 293-329. | DOI | MR | Zbl
[7] Gong, M. P.: Classification of Nilpotent Lie Algebras of Dimension $7$ (Over Algebraically Closed Fields and $R$). Ph.D. Thesis University of Waterloo, Waterloo (1998). | MR
[8] Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras. Mathematics and its Applications 361. Kluwer Academic Publishers Dordrecht (1996). | MR
[9] Leger, G., Luks, E.: On derivations and holomorphs of nilpotent Lie algebras. Nagoya Math. J. 44 (1971), 39-50. | DOI | MR | Zbl
[10] Ren, B., Meng, D.: Some $2$-step nilpotent Lie algebras. I. Linear Algebra Appl. 338 (2001), 77-98. | DOI | MR | Zbl
[11] Ren, B., Zhu, L. S.: Classification of $2$-step nilpotent Lie algebras of dimension $8$ with $2$-dimensional center. Commun. Algebra 39 (2011), 2068-2081. | DOI | MR
[12] Revoy, P.: Algèbres de Lie metabeliennes. Ann. Fac. Sci. Toulouse, V. Ser., Math. 2 (1980), 93-100 French. | DOI | MR | Zbl
[13] Santharoubane, L. J.: Kac-Moody Lie algebra and the classification of nilpotent Lie algebras of maximal rank. Can. J. Math. 34 (1982), 1215-1239. | DOI | MR
[14] Seeley, C.: $7$-dimensional nilpotent Lie algebras. Trans. Am. Math. Soc. 335 (1993), 479-496. | MR | Zbl
[15] Umlauf, K. A.: Ueber den Zusammenhang der endlichen continuirlichen Transformationsgruppen, insbesondere der Gruppen vom Range Null. Ph.D. Thesis University of Leipzig (1891), German.
Cité par Sources :