Keywords: power-moment; SL$_3(\mathbb Z)$-Kloosterman sum
@article{10_1007_s10587_013_0056_7,
author = {Djankovi\'c, Goran},
title = {Power-moments of {SL}$_3(\mathbb Z)$ {Kloosterman} sums},
journal = {Czechoslovak Mathematical Journal},
pages = {833--845},
year = {2013},
volume = {63},
number = {3},
doi = {10.1007/s10587-013-0056-7},
mrnumber = {3125658},
zbl = {06282114},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0056-7/}
}
TY - JOUR AU - Djanković, Goran TI - Power-moments of SL$_3(\mathbb Z)$ Kloosterman sums JO - Czechoslovak Mathematical Journal PY - 2013 SP - 833 EP - 845 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0056-7/ DO - 10.1007/s10587-013-0056-7 LA - en ID - 10_1007_s10587_013_0056_7 ER -
Djanković, Goran. Power-moments of SL$_3(\mathbb Z)$ Kloosterman sums. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 833-845. doi: 10.1007/s10587-013-0056-7
[1] Adolphson, A., Sperber, S.: Exponential sums and Newton polyhedra: cohomology and estimates. Ann. Math. (2) 130 (1989), 367-406. | MR | Zbl
[2] Bump, D., Friedberg, S., Goldfeld, D.: Poincaré series and Kloosterman sums for SL$(3,\mathbb Z)$. Acta Arith. 50 (1988), 31-89. | DOI | MR
[3] Goldfeld, D.: Automorphic Forms and $L$-Functions for the Group GL$(n, \mathbb R)$. With an appendix by Kevin A. Broughan. Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). | MR
[4] Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics 17 AMS, Providence, RI (1997). | MR | Zbl
[5] Kloosterman, H. D.: On the representation of numbers in the form $ax^2+by^2 +cz^2+dt^2$. Acta Math. 49 (1927), 407-464. | DOI | MR
[6] Larsen, M.: Appendix to Poincaré series and Kloosterman sums for SL$(3,\mathbb Z)$, in The estimation of $SL_3(\mathbb Z)$ Kloosterman sums. Acta Arith. 50 (1988), 86-89. | MR
Cité par Sources :