Power-moments of SL$_3(\mathbb Z)$ Kloosterman sums
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 833-845
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classical Kloosterman sums have a prominent role in the study of automorphic forms on GL$_2$ and further they have numerous applications in analytic number theory. In recent years, various problems in analytic theory of automorphic forms on GL$_3$ have been considered, in which analogous GL$_3$-Kloosterman sums (related to the corresponding Bruhat decomposition) appear. In this note we investigate the first four power-moments of the Kloosterman sums associated with the group SL$_3(\mathbb Z)$. We give formulas for the first three moments and a nontrivial bound for the fourth.
Classical Kloosterman sums have a prominent role in the study of automorphic forms on GL$_2$ and further they have numerous applications in analytic number theory. In recent years, various problems in analytic theory of automorphic forms on GL$_3$ have been considered, in which analogous GL$_3$-Kloosterman sums (related to the corresponding Bruhat decomposition) appear. In this note we investigate the first four power-moments of the Kloosterman sums associated with the group SL$_3(\mathbb Z)$. We give formulas for the first three moments and a nontrivial bound for the fourth.
DOI : 10.1007/s10587-013-0056-7
Classification : 11L05, 11T23
Keywords: power-moment; SL$_3(\mathbb Z)$-Kloosterman sum
@article{10_1007_s10587_013_0056_7,
     author = {Djankovi\'c, Goran},
     title = {Power-moments of {SL}$_3(\mathbb Z)$ {Kloosterman} sums},
     journal = {Czechoslovak Mathematical Journal},
     pages = {833--845},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0056-7},
     mrnumber = {3125658},
     zbl = {06282114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0056-7/}
}
TY  - JOUR
AU  - Djanković, Goran
TI  - Power-moments of SL$_3(\mathbb Z)$ Kloosterman sums
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 833
EP  - 845
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0056-7/
DO  - 10.1007/s10587-013-0056-7
LA  - en
ID  - 10_1007_s10587_013_0056_7
ER  - 
%0 Journal Article
%A Djanković, Goran
%T Power-moments of SL$_3(\mathbb Z)$ Kloosterman sums
%J Czechoslovak Mathematical Journal
%D 2013
%P 833-845
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0056-7/
%R 10.1007/s10587-013-0056-7
%G en
%F 10_1007_s10587_013_0056_7
Djanković, Goran. Power-moments of SL$_3(\mathbb Z)$ Kloosterman sums. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 833-845. doi: 10.1007/s10587-013-0056-7

[1] Adolphson, A., Sperber, S.: Exponential sums and Newton polyhedra: cohomology and estimates. Ann. Math. (2) 130 (1989), 367-406. | MR | Zbl

[2] Bump, D., Friedberg, S., Goldfeld, D.: Poincaré series and Kloosterman sums for SL$(3,\mathbb Z)$. Acta Arith. 50 (1988), 31-89. | DOI | MR

[3] Goldfeld, D.: Automorphic Forms and $L$-Functions for the Group GL$(n, \mathbb R)$. With an appendix by Kevin A. Broughan. Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006). | MR

[4] Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics 17 AMS, Providence, RI (1997). | MR | Zbl

[5] Kloosterman, H. D.: On the representation of numbers in the form $ax^2+by^2 +cz^2+dt^2$. Acta Math. 49 (1927), 407-464. | DOI | MR

[6] Larsen, M.: Appendix to Poincaré series and Kloosterman sums for SL$(3,\mathbb Z)$, in The estimation of $SL_3(\mathbb Z)$ Kloosterman sums. Acta Arith. 50 (1988), 86-89. | MR

Cité par Sources :