Some generalizations of torsion-free Crawley groups
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 819-831
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate two new classes of torsion-free Abelian groups which arise in a natural way from the notion of a torsion-free Crawley group. A group $G$ is said to be an Erdős group if for any pair of isomorphic pure subgroups $H,K$ with $G/H \cong G/K$, there is an automorphism of $G$ mapping $H$ onto $K$; it is said to be a weak Crawley group if for any pair $H, K$ of isomorphic dense maximal pure subgroups, there is an automorphism mapping $H$ onto $K$. We show that these classes are extensive and pay attention to the relationship of the Baer-Specker group to these classes. In particular, we show that the class of Crawley groups is strictly contained in the class of weak Crawley groups and that the class of Erdős groups is strictly contained in the class of weak Crawley groups.
In this paper we investigate two new classes of torsion-free Abelian groups which arise in a natural way from the notion of a torsion-free Crawley group. A group $G$ is said to be an Erdős group if for any pair of isomorphic pure subgroups $H,K$ with $G/H \cong G/K$, there is an automorphism of $G$ mapping $H$ onto $K$; it is said to be a weak Crawley group if for any pair $H, K$ of isomorphic dense maximal pure subgroups, there is an automorphism mapping $H$ onto $K$. We show that these classes are extensive and pay attention to the relationship of the Baer-Specker group to these classes. In particular, we show that the class of Crawley groups is strictly contained in the class of weak Crawley groups and that the class of Erdős groups is strictly contained in the class of weak Crawley groups.
DOI : 10.1007/s10587-013-0055-8
Classification : 20K10, 20K21
Keywords: Abelian group; Crawley group; weak Crawley group; Erdős group
@article{10_1007_s10587_013_0055_8,
     author = {Goldsmith, Brendan and Karimi, Fatemeh and Aghdam, Ahad Mehdizadeh},
     title = {Some generalizations of torsion-free {Crawley} groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {819--831},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0055-8},
     mrnumber = {3125657},
     zbl = {06282113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0055-8/}
}
TY  - JOUR
AU  - Goldsmith, Brendan
AU  - Karimi, Fatemeh
AU  - Aghdam, Ahad Mehdizadeh
TI  - Some generalizations of torsion-free Crawley groups
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 819
EP  - 831
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0055-8/
DO  - 10.1007/s10587-013-0055-8
LA  - en
ID  - 10_1007_s10587_013_0055_8
ER  - 
%0 Journal Article
%A Goldsmith, Brendan
%A Karimi, Fatemeh
%A Aghdam, Ahad Mehdizadeh
%T Some generalizations of torsion-free Crawley groups
%J Czechoslovak Mathematical Journal
%D 2013
%P 819-831
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0055-8/
%R 10.1007/s10587-013-0055-8
%G en
%F 10_1007_s10587_013_0055_8
Goldsmith, Brendan; Karimi, Fatemeh; Aghdam, Ahad Mehdizadeh. Some generalizations of torsion-free Crawley groups. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 819-831. doi: 10.1007/s10587-013-0055-8

[1] Corner, A. L. S., Göbel, R., Goldsmith, B.: On torsion-free Crawley groups. Q. J. Math. 57 (2006), 183-192. | DOI | MR | Zbl

[2] Dugas, M., Irwin, J.: On pure subgroups of Cartesian products of integers. Result. Math. 15 (1989), 35-52. | DOI | MR | Zbl

[3] Erdős, J.: Torsion-free factor groups of free abelian groups and a classification of torsion-free abelian groups. Publ. Math., Debrecen 5 (1957), 172-184. | MR | Zbl

[4] Fuchs, L.: Abelian Groups. Publishing House of the Hungarian Academy of Sciences, Budapest (1958). | MR | Zbl

[5] Fuchs, L.: Infinite Abelian Groups. Vol. I. Pure and Applied Mathematics 36 Academic Press, New York (1970). | MR | Zbl

[6] Fuchs, L.: Infinite Abelian Groups. Vol. II. Pure and Applied Mathematics 36 Academic Press, New York (1973). | MR | Zbl

[7] Goldsmith, B., Karimi, F.: On pure subgroups of the Baer-Specker group and weak Crawley groups. Result. Math. 64 (2013), 105-112. | DOI | MR

[8] Hill, P.: Equivalence theorems. Rocky Mt. J. Math. 23 (1993), 203-221. | DOI | MR | Zbl

[9] Hill, P., West, J. Kirchner: Subgroup transitivity in abelian groups. Proc. Am. Math. Soc. 126 (1998), 1293-1303. | DOI | MR

[10] Hill, P., Megibben, C.: Equivalence theorems for torsion-free groups. Fuchs, Laszlo et al. Abelian Groups, Proceedings of the 1991 Curaçao conference Lect. Notes Pure Appl. Math. 146 Marcel Dekker, New York 181-191 (1993). | MR | Zbl

[11] Salce, L., Strüngmann, L.: Stacked bases for homogeneous completely decomposable groups. Commun. Algebra 29 (2001), 2575-2588. | DOI | MR | Zbl

[12] R. B. Warfield, Jr.: Homomorphisms and duality for torsion-free groups. Math. Z. 107 (1968), 189-200. | DOI | MR | Zbl

Cité par Sources :