King type modification of $q$-Bernstein-Schurer operators
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 805-817
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Very recently the $q$-Bernstein-Schurer operators which reproduce only constant function were introduced and studied by C. V. Muraru (2011). Inspired by J. P. King, Positive linear operators which preserve $x^{2}$ (2003), in this paper we modify $q$-Bernstein-Schurer operators to King type modification of $q$-Bernstein-Schurer operators, so that these operators reproduce constant as well as quadratic test functions $x^{2}$ and study the approximation properties of these operators. We establish a convergence theorem of Korovkin type. We also get some estimations for the rate of convergence of these operators by using modulus of continuity. Furthermore, we give a Voronovskaja-type asymptotic formula for these operators.
DOI :
10.1007/s10587-013-0054-9
Classification :
41A10, 41A25, 41A36
Keywords: King type operator; $q$-Bernstein-Schurer operator; Korovich type approximation theorem; rate of convergence; Voronovskaja-type result; modulus of continuity
Keywords: King type operator; $q$-Bernstein-Schurer operator; Korovich type approximation theorem; rate of convergence; Voronovskaja-type result; modulus of continuity
@article{10_1007_s10587_013_0054_9,
author = {Ren, Mei-Ying and Zeng, Xiao-Ming},
title = {King type modification of $q${-Bernstein-Schurer} operators},
journal = {Czechoslovak Mathematical Journal},
pages = {805--817},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2013},
doi = {10.1007/s10587-013-0054-9},
mrnumber = {3125656},
zbl = {06282112},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/}
}
TY - JOUR AU - Ren, Mei-Ying AU - Zeng, Xiao-Ming TI - King type modification of $q$-Bernstein-Schurer operators JO - Czechoslovak Mathematical Journal PY - 2013 SP - 805 EP - 817 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/ DO - 10.1007/s10587-013-0054-9 LA - en ID - 10_1007_s10587_013_0054_9 ER -
%0 Journal Article %A Ren, Mei-Ying %A Zeng, Xiao-Ming %T King type modification of $q$-Bernstein-Schurer operators %J Czechoslovak Mathematical Journal %D 2013 %P 805-817 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/ %R 10.1007/s10587-013-0054-9 %G en %F 10_1007_s10587_013_0054_9
Ren, Mei-Ying; Zeng, Xiao-Ming. King type modification of $q$-Bernstein-Schurer operators. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 805-817. doi: 10.1007/s10587-013-0054-9
Cité par Sources :