King type modification of $q$-Bernstein-Schurer operators
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 805-817.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Very recently the $q$-Bernstein-Schurer operators which reproduce only constant function were introduced and studied by C. V. Muraru (2011). Inspired by J. P. King, Positive linear operators which preserve $x^{2}$ (2003), in this paper we modify $q$-Bernstein-Schurer operators to King type modification of $q$-Bernstein-Schurer operators, so that these operators reproduce constant as well as quadratic test functions $x^{2}$ and study the approximation properties of these operators. We establish a convergence theorem of Korovkin type. We also get some estimations for the rate of convergence of these operators by using modulus of continuity. Furthermore, we give a Voronovskaja-type asymptotic formula for these operators.
DOI : 10.1007/s10587-013-0054-9
Classification : 41A10, 41A25, 41A36
Keywords: King type operator; $q$-Bernstein-Schurer operator; Korovich type approximation theorem; rate of convergence; Voronovskaja-type result; modulus of continuity
@article{10_1007_s10587_013_0054_9,
     author = {Ren, Mei-Ying and Zeng, Xiao-Ming},
     title = {King type modification of $q${-Bernstein-Schurer} operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {805--817},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2013},
     doi = {10.1007/s10587-013-0054-9},
     mrnumber = {3125656},
     zbl = {06282112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/}
}
TY  - JOUR
AU  - Ren, Mei-Ying
AU  - Zeng, Xiao-Ming
TI  - King type modification of $q$-Bernstein-Schurer operators
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 805
EP  - 817
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/
DO  - 10.1007/s10587-013-0054-9
LA  - en
ID  - 10_1007_s10587_013_0054_9
ER  - 
%0 Journal Article
%A Ren, Mei-Ying
%A Zeng, Xiao-Ming
%T King type modification of $q$-Bernstein-Schurer operators
%J Czechoslovak Mathematical Journal
%D 2013
%P 805-817
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/
%R 10.1007/s10587-013-0054-9
%G en
%F 10_1007_s10587_013_0054_9
Ren, Mei-Ying; Zeng, Xiao-Ming. King type modification of $q$-Bernstein-Schurer operators. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 805-817. doi : 10.1007/s10587-013-0054-9. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/

Cité par Sources :