King type modification of $q$-Bernstein-Schurer operators
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 805-817
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Very recently the $q$-Bernstein-Schurer operators which reproduce only constant function were introduced and studied by C. V. Muraru (2011). Inspired by J. P. King, Positive linear operators which preserve $x^{2}$ (2003), in this paper we modify $q$-Bernstein-Schurer operators to King type modification of $q$-Bernstein-Schurer operators, so that these operators reproduce constant as well as quadratic test functions $x^{2}$ and study the approximation properties of these operators. We establish a convergence theorem of Korovkin type. We also get some estimations for the rate of convergence of these operators by using modulus of continuity. Furthermore, we give a Voronovskaja-type asymptotic formula for these operators.
Very recently the $q$-Bernstein-Schurer operators which reproduce only constant function were introduced and studied by C. V. Muraru (2011). Inspired by J. P. King, Positive linear operators which preserve $x^{2}$ (2003), in this paper we modify $q$-Bernstein-Schurer operators to King type modification of $q$-Bernstein-Schurer operators, so that these operators reproduce constant as well as quadratic test functions $x^{2}$ and study the approximation properties of these operators. We establish a convergence theorem of Korovkin type. We also get some estimations for the rate of convergence of these operators by using modulus of continuity. Furthermore, we give a Voronovskaja-type asymptotic formula for these operators.
DOI : 10.1007/s10587-013-0054-9
Classification : 41A10, 41A25, 41A36
Keywords: King type operator; $q$-Bernstein-Schurer operator; Korovich type approximation theorem; rate of convergence; Voronovskaja-type result; modulus of continuity
@article{10_1007_s10587_013_0054_9,
     author = {Ren, Mei-Ying and Zeng, Xiao-Ming},
     title = {King type modification of $q${-Bernstein-Schurer} operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {805--817},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0054-9},
     mrnumber = {3125656},
     zbl = {06282112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/}
}
TY  - JOUR
AU  - Ren, Mei-Ying
AU  - Zeng, Xiao-Ming
TI  - King type modification of $q$-Bernstein-Schurer operators
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 805
EP  - 817
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/
DO  - 10.1007/s10587-013-0054-9
LA  - en
ID  - 10_1007_s10587_013_0054_9
ER  - 
%0 Journal Article
%A Ren, Mei-Ying
%A Zeng, Xiao-Ming
%T King type modification of $q$-Bernstein-Schurer operators
%J Czechoslovak Mathematical Journal
%D 2013
%P 805-817
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0054-9/
%R 10.1007/s10587-013-0054-9
%G en
%F 10_1007_s10587_013_0054_9
Ren, Mei-Ying; Zeng, Xiao-Ming. King type modification of $q$-Bernstein-Schurer operators. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 805-817. doi: 10.1007/s10587-013-0054-9

[1] Agratini, O., Nowak, G.: On a generalization of Bleimann, Butzer and Hahn operators based on $q$-integers. Math. Comput. Modelling 53 (2011), 699-706. | DOI | MR | Zbl

[2] Aral, A.: A generalization of Szász-Mirakyan operators based on $q$-integers. Math. Comput. Modelling 47 (2008), 1052-1062. | DOI | MR | Zbl

[3] Chen, W. Z.: Operators Approximation Theory. Xiamen University Press Xiamen (1989), Chinese.

[4] DeVore, R. A., Lorentz, G. G.: Constructive Approximation. Grundlehren der Mathematischen Wissenschaften 303. Springer Berlin (1993). | DOI | MR

[5] Doğru, O., Örkcü, M.: Statistical approximation by a modification of $q$-Meyer-König Zeller operators. Appl. Math. Lett. 23 (2010), 261-266. | DOI | MR

[6] Gal, S. G.: Voronovskaja's theorem, shape preserving properties and iterations for complex $q$-Bernstein polynomials. Stud. Sci. Math. Hung. 48 (2011), 23-43. | MR

[7] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications 34. Cambridge University Press Cambridge (1990). | MR

[8] Gupta, V., Radu, C.: Statistical approximation properties of $q$-Baskakov-Kantorovich operators. Cent. Eur. J. Math. 7 (2009), 809-818. | DOI | MR | Zbl

[9] Kac, V., Cheung, P.: Quantum Calculus. Universitext. Springer New York (2002). | MR

[10] King, J. P.: Positive linear operators which preserve $x^{2}$. Acta Math. Hung. 99 (2003), 203-208. | DOI | MR | Zbl

[11] Mahmudov, N. I.: Approximation properties of complex $q$-Szász-Mirakjan operators in compact disks. Comput. Math. Appl. 60 (2010), 1784-1791. | DOI | MR | Zbl

[12] Mahmudov, N. I.: Approximation by genuine $q$-Bernstein-Durrmeyer polynomials in compact disks. Hacet. J. Math. Stat. 40 (2011), 77-89. | MR | Zbl

[13] Muraru, C.-V.: Note on $q$-Bernstein-Schurer operators. Stud. Univ. Babeş-Bolyai Math. 56 (2011), 489-495. | MR

[14] Ostrovska, S.: $q$-Bernstein polynomials of the Cauchy kernel. Appl. Math. Comput. 198 (2008), 261-270. | DOI | MR | Zbl

[15] Phillips, G. M.: Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518. | MR | Zbl

[16] Videnskii, V. S.: On $q$-Bernstein polynomials and related positive linear operators. Problems of Modern Mathematics and Mathematical Education Hertzen readings St.-Petersburg (2004), 118-126 Russian.

Cité par Sources :