On the subfields of cyclotomic function fields
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 799-803
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $K = \mathbb {F}_q(T)$ be the rational function field over a finite field of $q$ elements. For any polynomial $f(T)\in \mathbb {F}_q[T]$ with positive degree, denote by $\Lambda _f$ the torsion points of the Carlitz module for the polynomial ring $\mathbb {F}_q[T]$. In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield $M$ of the cyclotomic function field $K(\Lambda _P)$ of degree $k$ over $\mathbb {F}_q(T)$, where $P\in \mathbb {F}_q[T]$ is an irreducible polynomial of positive degree and $k>1$ is a positive divisor of $q-1$. A formula for the analytic class number for the maximal real subfield $M^+$ of $M$ is also presented. Futhermore, a relative class number formula for ideal class group of $M$ will be given in terms of Artin $L$-function in this paper.
DOI :
10.1007/s10587-013-0053-x
Classification :
11R18, 11R58, 11R60
Keywords: cyclotomic function fields; $L$-function; class number formula
Keywords: cyclotomic function fields; $L$-function; class number formula
@article{10_1007_s10587_013_0053_x,
author = {Zhao, Zhengjun and Wu, Xia},
title = {On the subfields of cyclotomic function fields},
journal = {Czechoslovak Mathematical Journal},
pages = {799--803},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2013},
doi = {10.1007/s10587-013-0053-x},
mrnumber = {3125655},
zbl = {06282111},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0053-x/}
}
TY - JOUR AU - Zhao, Zhengjun AU - Wu, Xia TI - On the subfields of cyclotomic function fields JO - Czechoslovak Mathematical Journal PY - 2013 SP - 799 EP - 803 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0053-x/ DO - 10.1007/s10587-013-0053-x LA - en ID - 10_1007_s10587_013_0053_x ER -
%0 Journal Article %A Zhao, Zhengjun %A Wu, Xia %T On the subfields of cyclotomic function fields %J Czechoslovak Mathematical Journal %D 2013 %P 799-803 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0053-x/ %R 10.1007/s10587-013-0053-x %G en %F 10_1007_s10587_013_0053_x
Zhao, Zhengjun; Wu, Xia. On the subfields of cyclotomic function fields. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 799-803. doi: 10.1007/s10587-013-0053-x
Cité par Sources :