On the subfields of cyclotomic function fields
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 799-803
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $K = \mathbb {F}_q(T)$ be the rational function field over a finite field of $q$ elements. For any polynomial $f(T)\in \mathbb {F}_q[T]$ with positive degree, denote by $\Lambda _f$ the torsion points of the Carlitz module for the polynomial ring $\mathbb {F}_q[T]$. In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield $M$ of the cyclotomic function field $K(\Lambda _P)$ of degree $k$ over $\mathbb {F}_q(T)$, where $P\in \mathbb {F}_q[T]$ is an irreducible polynomial of positive degree and $k>1$ is a positive divisor of $q-1$. A formula for the analytic class number for the maximal real subfield $M^+$ of $M$ is also presented. Futhermore, a relative class number formula for ideal class group of $M$ will be given in terms of Artin $L$-function in this paper.
Let $K = \mathbb {F}_q(T)$ be the rational function field over a finite field of $q$ elements. For any polynomial $f(T)\in \mathbb {F}_q[T]$ with positive degree, denote by $\Lambda _f$ the torsion points of the Carlitz module for the polynomial ring $\mathbb {F}_q[T]$. In this short paper, we will determine an explicit formula for the analytic class number for the unique subfield $M$ of the cyclotomic function field $K(\Lambda _P)$ of degree $k$ over $\mathbb {F}_q(T)$, where $P\in \mathbb {F}_q[T]$ is an irreducible polynomial of positive degree and $k>1$ is a positive divisor of $q-1$. A formula for the analytic class number for the maximal real subfield $M^+$ of $M$ is also presented. Futhermore, a relative class number formula for ideal class group of $M$ will be given in terms of Artin $L$-function in this paper.
DOI : 10.1007/s10587-013-0053-x
Classification : 11R18, 11R58, 11R60
Keywords: cyclotomic function fields; $L$-function; class number formula
@article{10_1007_s10587_013_0053_x,
     author = {Zhao, Zhengjun and Wu, Xia},
     title = {On the subfields of cyclotomic function fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {799--803},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0053-x},
     mrnumber = {3125655},
     zbl = {06282111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0053-x/}
}
TY  - JOUR
AU  - Zhao, Zhengjun
AU  - Wu, Xia
TI  - On the subfields of cyclotomic function fields
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 799
EP  - 803
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0053-x/
DO  - 10.1007/s10587-013-0053-x
LA  - en
ID  - 10_1007_s10587_013_0053_x
ER  - 
%0 Journal Article
%A Zhao, Zhengjun
%A Wu, Xia
%T On the subfields of cyclotomic function fields
%J Czechoslovak Mathematical Journal
%D 2013
%P 799-803
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0053-x/
%R 10.1007/s10587-013-0053-x
%G en
%F 10_1007_s10587_013_0053_x
Zhao, Zhengjun; Wu, Xia. On the subfields of cyclotomic function fields. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 799-803. doi: 10.1007/s10587-013-0053-x

[1] Bae, S., Lyun, P.-L.: Class numbers of cyclotomic function fields. Acta. Arith. 102 (2002), 251-259. | DOI | MR | Zbl

[2] Galovich, S., Rosen, M.: Units and class groups in cyclotomic function fields. J. Number Theory 14 (1982), 156-184. | DOI | MR | Zbl

[3] Guo, L., Linghsuen, S.: Class numbers of cyclotomic function fields. Trans. Am. Math. Soc. 351 (1999), 4445-4467. | DOI | MR

[4] Hayes, D. R.: Analytic class number formulas in global function fields. Invent. Math. 65 (1981), 49-69. | DOI | MR

[5] Rosen, M.: Number Theory in Function Fields. Graduate Texts in Mathematics 210. Springer, New York (2002). | MR | Zbl

[6] Rosen, M.: The Hilbert class field in function fields. Expo. Math. 5 (1987), 365-378. | MR | Zbl

[7] Zhao, Z. Z.: The Arithmetic Problems of Some Special Algebraic Function Fields. Ph.D. Thesis, NJU (2012), Chinese.

Cité par Sources :