On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 783-797.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\leq n\leq 10.$ Moreover, we give all positive integer solutions of the same equation for $0\leq n\leq 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$.
DOI : 10.1007/s10587-013-0052-y
Classification : 11B37, 11B39, 11B50, 11B99
Keywords: Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number
@article{10_1007_s10587_013_0052_y,
     author = {Keskin, Refik and \c{S}iar, Zafer and Karaatl{\i}, Olcay},
     title = {On the {Diophantine} equation $x^{2}-kxy+y^{2}-2^{n}=0$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {783--797},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2013},
     doi = {10.1007/s10587-013-0052-y},
     mrnumber = {3125654},
     zbl = {06282110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0052-y/}
}
TY  - JOUR
AU  - Keskin, Refik
AU  - Şiar, Zafer
AU  - Karaatlı, Olcay
TI  - On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 783
EP  - 797
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0052-y/
DO  - 10.1007/s10587-013-0052-y
LA  - en
ID  - 10_1007_s10587_013_0052_y
ER  - 
%0 Journal Article
%A Keskin, Refik
%A Şiar, Zafer
%A Karaatlı, Olcay
%T On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$
%J Czechoslovak Mathematical Journal
%D 2013
%P 783-797
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0052-y/
%R 10.1007/s10587-013-0052-y
%G en
%F 10_1007_s10587_013_0052_y
Keskin, Refik; Şiar, Zafer; Karaatlı, Olcay. On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 783-797. doi : 10.1007/s10587-013-0052-y. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0052-y/

Cité par Sources :