On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 783-797
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\leq n\leq 10.$ Moreover, we give all positive integer solutions of the same equation for $0\leq n\leq 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$.
In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\leq n\leq 10.$ Moreover, we give all positive integer solutions of the same equation for $0\leq n\leq 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$.
DOI : 10.1007/s10587-013-0052-y
Classification : 11B37, 11B39, 11B50, 11B99
Keywords: Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number
@article{10_1007_s10587_013_0052_y,
     author = {Keskin, Refik and \c{S}iar, Zafer and Karaatl{\i}, Olcay},
     title = {On the {Diophantine} equation $x^{2}-kxy+y^{2}-2^{n}=0$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {783--797},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0052-y},
     mrnumber = {3125654},
     zbl = {06282110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0052-y/}
}
TY  - JOUR
AU  - Keskin, Refik
AU  - Şiar, Zafer
AU  - Karaatlı, Olcay
TI  - On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 783
EP  - 797
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0052-y/
DO  - 10.1007/s10587-013-0052-y
LA  - en
ID  - 10_1007_s10587_013_0052_y
ER  - 
%0 Journal Article
%A Keskin, Refik
%A Şiar, Zafer
%A Karaatlı, Olcay
%T On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$
%J Czechoslovak Mathematical Journal
%D 2013
%P 783-797
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0052-y/
%R 10.1007/s10587-013-0052-y
%G en
%F 10_1007_s10587_013_0052_y
Keskin, Refik; Şiar, Zafer; Karaatlı, Olcay. On the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 783-797. doi: 10.1007/s10587-013-0052-y

[1] Leon, M. J. De: Pell's equations and Pell number triples. Fibonacci Q. 14 (1976), 456-460. | MR

[2] Jacobson, M. J., Williams, H. C.: Solving the Pell Equation. CMS Books in Mathematics. Springer, New York (2009). | MR | Zbl

[3] Jones, J. P.: Representation of solutions of Pell equations using Lucas sequences. Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 75-86. | MR | Zbl

[4] Kalman, D., Mena, R.: The Fibonacci numbers---exposed. Math. Mag. 76 (2003), 167-181. | DOI | MR | Zbl

[5] Keskin, R.: Solutions of some quadratic Diophantine equations. Comput. Math. Appl. 60 (2010), 2225-2230. | DOI | MR | Zbl

[6] Keskin, R., Karaatli, O., Şiar, Z.: On the Diophantine equation $x^{2}-kxy+y^{2}+2^{n}=0$. Miskolc Math. Notes 13 (2012), 375-388. | MR

[7] Keskin, R., Demirtürk, B.: Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences. Ars Comb. 111 (2013), 161-179. | MR

[8] Marlewski, A., Zarzycki, P.: Infinitely many solutions of the Diophantine equation $x^{2}-kxy+y^{2}+x=0$. Comput. Math. Appl. 47 (2004), 115-121. | DOI | MR

[9] McDaniel, W. L.: Diophantine representation of Lucas sequences. Fibonacci Q. 33 (1995), 59-63. | MR | Zbl

[10] Melham, R.: Conics which characterize certain Lucas sequences. Fibonacci Q. 35 (1997), 248-251. | MR | Zbl

[11] Nagell, T.: Introduction to Number Theory. John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm (1951). | MR | Zbl

[12] Ribenboim, P.: My Numbers, My Friends. Popular Lectures on Number Theory. Springer, New York (2000). | MR | Zbl

[13] Robertson, J. P.: Solving the generalized Pell equation $x^{2}-Dy^{2}=N$. http://hometown.aol.com/jpr2718/pell.pdf (2003).

[14] Robinowitz, S.: Algorithmic manipulation of Fibonacci identities. Applications of Fibonacci Numbers. 6 (1996), 389-408 G. E. Bergum, et al. Kluwer Acadademic Publishers, Dordrecht. | DOI | MR

[15] Yuan, P., Hu, Y.: On the Diophantine equation $x^{2}-kxy+y^{2}+lx=0$, $l\in \{ 1,2,4\}$. Comput. Math. Appl. 61 (2011), 573-577. | MR | Zbl

Cité par Sources :