On the spectral radius of $\ddag $-shape trees
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 777-782.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A(G)$ be the adjacency matrix of $G$. The characteristic polynomial of the adjacency matrix $A$ is called the characteristic polynomial of the graph $G$ and is denoted by $\phi (G, \lambda )$ or simply $\phi (G)$. The spectrum of $G$ consists of the roots (together with their multiplicities) $\lambda _1(G)\geq \lambda _2(G)\geq \ldots \geq \lambda _n(G)$ of the equation $\phi (G, \lambda )=0$. The largest root $\lambda _1(G)$ is referred to as the spectral radius of $G$. A $\ddag $-shape is a tree with exactly two of its vertices having maximal degree 4. We will denote by $G(l_1, l_2, \ldots , l_7)$ $(l_1\geq 0$, $l_i\geq 1$, $i=2,3,\ldots , 7)$ a $\ddag $-shape tree such that $G(l_1, l_2, \ldots , l_7)-u-v=P_{l_1}\cup P_{l_2}\cup \ldots \cup P_{l_7}$, where $u$ and $v$ are the vertices of degree 4. In this paper we prove that $3\sqrt {2}/{2} \lambda _1(G(l_1, l_2, \ldots , l_7)) {5}/{2}$.
DOI : 10.1007/s10587-013-0051-z
Classification : 05C50
Keywords: spectra of graphs; spectral radius; $\ddag $-shape tree
@article{10_1007_s10587_013_0051_z,
     author = {Ma, Xiaoling and Wen, Fei},
     title = {On the spectral radius of $\ddag $-shape trees},
     journal = {Czechoslovak Mathematical Journal},
     pages = {777--782},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2013},
     doi = {10.1007/s10587-013-0051-z},
     mrnumber = {3125653},
     zbl = {06282109},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0051-z/}
}
TY  - JOUR
AU  - Ma, Xiaoling
AU  - Wen, Fei
TI  - On the spectral radius of $\ddag $-shape trees
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 777
EP  - 782
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0051-z/
DO  - 10.1007/s10587-013-0051-z
LA  - en
ID  - 10_1007_s10587_013_0051_z
ER  - 
%0 Journal Article
%A Ma, Xiaoling
%A Wen, Fei
%T On the spectral radius of $\ddag $-shape trees
%J Czechoslovak Mathematical Journal
%D 2013
%P 777-782
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0051-z/
%R 10.1007/s10587-013-0051-z
%G en
%F 10_1007_s10587_013_0051_z
Ma, Xiaoling; Wen, Fei. On the spectral radius of $\ddag $-shape trees. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 777-782. doi : 10.1007/s10587-013-0051-z. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0051-z/

Cité par Sources :