On the spectral radius of $\ddag $-shape trees
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 777-782
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $A(G)$ be the adjacency matrix of $G$. The characteristic polynomial of the adjacency matrix $A$ is called the characteristic polynomial of the graph $G$ and is denoted by $\phi (G, \lambda )$ or simply $\phi (G)$. The spectrum of $G$ consists of the roots (together with their multiplicities) $\lambda _1(G)\geq \lambda _2(G)\geq \ldots \geq \lambda _n(G)$ of the equation $\phi (G, \lambda )=0$. The largest root $\lambda _1(G)$ is referred to as the spectral radius of $G$. A $\ddag $-shape is a tree with exactly two of its vertices having maximal degree 4. We will denote by $G(l_1, l_2, \ldots , l_7)$ $(l_1\geq 0$, $l_i\geq 1$, $i=2,3,\ldots , 7)$ a $\ddag $-shape tree such that $G(l_1, l_2, \ldots , l_7)-u-v=P_{l_1}\cup P_{l_2}\cup \ldots \cup P_{l_7}$, where $u$ and $v$ are the vertices of degree 4. In this paper we prove that $3\sqrt {2}/{2} \lambda _1(G(l_1, l_2, \ldots , l_7)) {5}/{2}$.
DOI :
10.1007/s10587-013-0051-z
Classification :
05C50
Keywords: spectra of graphs; spectral radius; $\ddag $-shape tree
Keywords: spectra of graphs; spectral radius; $\ddag $-shape tree
@article{10_1007_s10587_013_0051_z,
author = {Ma, Xiaoling and Wen, Fei},
title = {On the spectral radius of $\ddag $-shape trees},
journal = {Czechoslovak Mathematical Journal},
pages = {777--782},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2013},
doi = {10.1007/s10587-013-0051-z},
mrnumber = {3125653},
zbl = {06282109},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0051-z/}
}
TY - JOUR AU - Ma, Xiaoling AU - Wen, Fei TI - On the spectral radius of $\ddag $-shape trees JO - Czechoslovak Mathematical Journal PY - 2013 SP - 777 EP - 782 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0051-z/ DO - 10.1007/s10587-013-0051-z LA - en ID - 10_1007_s10587_013_0051_z ER -
%0 Journal Article %A Ma, Xiaoling %A Wen, Fei %T On the spectral radius of $\ddag $-shape trees %J Czechoslovak Mathematical Journal %D 2013 %P 777-782 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0051-z/ %R 10.1007/s10587-013-0051-z %G en %F 10_1007_s10587_013_0051_z
Ma, Xiaoling; Wen, Fei. On the spectral radius of $\ddag $-shape trees. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 777-782. doi: 10.1007/s10587-013-0051-z
Cité par Sources :