Pressing Down Lemma for $\lambda $-trees and its applications
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 763-775
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For any ordinal $\lambda $ of uncountable cofinality, a $\lambda $-tree is a tree $T$ of height $\lambda $ such that $|T_{\alpha }|{\rm cf}(\lambda )$ for each $\alpha \lambda $, where $T_{\alpha }=\{x\in T\colon {\rm ht}(x)=\alpha \}$. In this note we get a Pressing Down Lemma for $\lambda $-trees and discuss some of its applications. We show that if $\eta $ is an uncountable ordinal and $T$ is a Hausdorff tree of height $\eta $ such that $|T_{\alpha }|\leq \omega $ for each $\alpha \eta $, then the tree $T$ is collectionwise Hausdorff if and only if for each antichain $C\subset T$ and for each limit ordinal $\alpha \leq \eta $ with ${\rm cf}(\alpha )>\omega $, $\{{\rm ht}(c)\colon c\in C\} \cap \alpha $ is not stationary in $\alpha $. In the last part of this note, we investigate some properties of $\kappa $-trees, $\kappa $-Suslin trees and almost $\kappa $-Suslin trees, where $\kappa $ is an uncountable regular cardinal.
DOI :
10.1007/s10587-013-0050-0
Classification :
54F05, 54F65
Keywords: tree; $D$-space; $\lambda $-tree; property $\gamma $; collectionwise Hausdorff
Keywords: tree; $D$-space; $\lambda $-tree; property $\gamma $; collectionwise Hausdorff
@article{10_1007_s10587_013_0050_0,
author = {Li, Hui and Peng, Liang-Xue},
title = {Pressing {Down} {Lemma} for $\lambda $-trees and its applications},
journal = {Czechoslovak Mathematical Journal},
pages = {763--775},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2013},
doi = {10.1007/s10587-013-0050-0},
mrnumber = {3125652},
zbl = {06282108},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/}
}
TY - JOUR AU - Li, Hui AU - Peng, Liang-Xue TI - Pressing Down Lemma for $\lambda $-trees and its applications JO - Czechoslovak Mathematical Journal PY - 2013 SP - 763 EP - 775 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/ DO - 10.1007/s10587-013-0050-0 LA - en ID - 10_1007_s10587_013_0050_0 ER -
%0 Journal Article %A Li, Hui %A Peng, Liang-Xue %T Pressing Down Lemma for $\lambda $-trees and its applications %J Czechoslovak Mathematical Journal %D 2013 %P 763-775 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/ %R 10.1007/s10587-013-0050-0 %G en %F 10_1007_s10587_013_0050_0
Li, Hui; Peng, Liang-Xue. Pressing Down Lemma for $\lambda $-trees and its applications. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 763-775. doi: 10.1007/s10587-013-0050-0
Cité par Sources :