Pressing Down Lemma for $\lambda $-trees and its applications
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 763-775.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For any ordinal $\lambda $ of uncountable cofinality, a $\lambda $-tree is a tree $T$ of height $\lambda $ such that $|T_{\alpha }|{\rm cf}(\lambda )$ for each $\alpha \lambda $, where $T_{\alpha }=\{x\in T\colon {\rm ht}(x)=\alpha \}$. In this note we get a Pressing Down Lemma for $\lambda $-trees and discuss some of its applications. We show that if $\eta $ is an uncountable ordinal and $T$ is a Hausdorff tree of height $\eta $ such that $|T_{\alpha }|\leq \omega $ for each $\alpha \eta $, then the tree $T$ is collectionwise Hausdorff if and only if for each antichain $C\subset T$ and for each limit ordinal $\alpha \leq \eta $ with ${\rm cf}(\alpha )>\omega $, $\{{\rm ht}(c)\colon c\in C\} \cap \alpha $ is not stationary in $\alpha $. In the last part of this note, we investigate some properties of $\kappa $-trees, $\kappa $-Suslin trees and almost $\kappa $-Suslin trees, where $\kappa $ is an uncountable regular cardinal.
DOI : 10.1007/s10587-013-0050-0
Classification : 54F05, 54F65
Keywords: tree; $D$-space; $\lambda $-tree; property $\gamma $; collectionwise Hausdorff
@article{10_1007_s10587_013_0050_0,
     author = {Li, Hui and Peng, Liang-Xue},
     title = {Pressing {Down} {Lemma} for $\lambda $-trees and its applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {763--775},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2013},
     doi = {10.1007/s10587-013-0050-0},
     mrnumber = {3125652},
     zbl = {06282108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/}
}
TY  - JOUR
AU  - Li, Hui
AU  - Peng, Liang-Xue
TI  - Pressing Down Lemma for $\lambda $-trees and its applications
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 763
EP  - 775
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/
DO  - 10.1007/s10587-013-0050-0
LA  - en
ID  - 10_1007_s10587_013_0050_0
ER  - 
%0 Journal Article
%A Li, Hui
%A Peng, Liang-Xue
%T Pressing Down Lemma for $\lambda $-trees and its applications
%J Czechoslovak Mathematical Journal
%D 2013
%P 763-775
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/
%R 10.1007/s10587-013-0050-0
%G en
%F 10_1007_s10587_013_0050_0
Li, Hui; Peng, Liang-Xue. Pressing Down Lemma for $\lambda $-trees and its applications. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 763-775. doi : 10.1007/s10587-013-0050-0. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/

Cité par Sources :