Pressing Down Lemma for $\lambda $-trees and its applications
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 763-775
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For any ordinal $\lambda $ of uncountable cofinality, a $\lambda $-tree is a tree $T$ of height $\lambda $ such that $|T_{\alpha }|{\rm cf}(\lambda )$ for each $\alpha \lambda $, where $T_{\alpha }=\{x\in T\colon {\rm ht}(x)=\alpha \}$. In this note we get a Pressing Down Lemma for $\lambda $-trees and discuss some of its applications. We show that if $\eta $ is an uncountable ordinal and $T$ is a Hausdorff tree of height $\eta $ such that $|T_{\alpha }|\leq \omega $ for each $\alpha \eta $, then the tree $T$ is collectionwise Hausdorff if and only if for each antichain $C\subset T$ and for each limit ordinal $\alpha \leq \eta $ with ${\rm cf}(\alpha )>\omega $, $\{{\rm ht}(c)\colon c\in C\} \cap \alpha $ is not stationary in $\alpha $. In the last part of this note, we investigate some properties of $\kappa $-trees, $\kappa $-Suslin trees and almost $\kappa $-Suslin trees, where $\kappa $ is an uncountable regular cardinal.
For any ordinal $\lambda $ of uncountable cofinality, a $\lambda $-tree is a tree $T$ of height $\lambda $ such that $|T_{\alpha }|{\rm cf}(\lambda )$ for each $\alpha \lambda $, where $T_{\alpha }=\{x\in T\colon {\rm ht}(x)=\alpha \}$. In this note we get a Pressing Down Lemma for $\lambda $-trees and discuss some of its applications. We show that if $\eta $ is an uncountable ordinal and $T$ is a Hausdorff tree of height $\eta $ such that $|T_{\alpha }|\leq \omega $ for each $\alpha \eta $, then the tree $T$ is collectionwise Hausdorff if and only if for each antichain $C\subset T$ and for each limit ordinal $\alpha \leq \eta $ with ${\rm cf}(\alpha )>\omega $, $\{{\rm ht}(c)\colon c\in C\} \cap \alpha $ is not stationary in $\alpha $. In the last part of this note, we investigate some properties of $\kappa $-trees, $\kappa $-Suslin trees and almost $\kappa $-Suslin trees, where $\kappa $ is an uncountable regular cardinal.
DOI : 10.1007/s10587-013-0050-0
Classification : 54F05, 54F65
Keywords: tree; $D$-space; $\lambda $-tree; property $\gamma $; collectionwise Hausdorff
@article{10_1007_s10587_013_0050_0,
     author = {Li, Hui and Peng, Liang-Xue},
     title = {Pressing {Down} {Lemma} for $\lambda $-trees and its applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {763--775},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0050-0},
     mrnumber = {3125652},
     zbl = {06282108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/}
}
TY  - JOUR
AU  - Li, Hui
AU  - Peng, Liang-Xue
TI  - Pressing Down Lemma for $\lambda $-trees and its applications
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 763
EP  - 775
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/
DO  - 10.1007/s10587-013-0050-0
LA  - en
ID  - 10_1007_s10587_013_0050_0
ER  - 
%0 Journal Article
%A Li, Hui
%A Peng, Liang-Xue
%T Pressing Down Lemma for $\lambda $-trees and its applications
%J Czechoslovak Mathematical Journal
%D 2013
%P 763-775
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0050-0/
%R 10.1007/s10587-013-0050-0
%G en
%F 10_1007_s10587_013_0050_0
Li, Hui; Peng, Liang-Xue. Pressing Down Lemma for $\lambda $-trees and its applications. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 763-775. doi: 10.1007/s10587-013-0050-0

[1] Borges, C. R., Wehrly, A. C.: A study of $D$-spaces. Topology Proc. 16 (1991), 7-15. | MR | Zbl

[2] Devlin, K. J., Shelah, S.: Suslin properties and tree topologies. Proc. Lond. Math. Soc., III. Ser. 39 (1979), 237-252. | DOI | MR

[3] Engelking, R.: General Topology. Rev. and compl. ed. Sigma Series in Pure Mathematics 6. Heldermann Berlin (1989). | MR

[4] Fleissner, W. G.: Remarks on Suslin properties and tree topologies. Proc. Am. Math. Soc. 80 (1980), 320-326. | DOI | MR

[5] Fleissner, W. G., Stanley, A. M.: $D$-spaces. Topology Appl. 114 (2001), 261-271. | DOI | MR | Zbl

[6] Fodor, G.: Eine Bemerkung zur Theorie der regressiven Funktionen. Acta Sci. Math. 17 (1956), 139-142. | MR | Zbl

[7] Guo, H. F., Junnila, H.: On $D$-spaces and thick covers. Topology Appl. 158 (2011), 2111-2121. | DOI | MR

[8] Hart, K. P.: More remarks on Suslin properties and tree topologies. Topology Appl. 15 (1983), 151-158. | DOI | MR

[9] Kunen, K.: Set Theory. An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics vol. 102 North-Holland, Amsterdam (1980). | MR | Zbl

[10] Nyikos, P. J.: Various topologies on trees. Proceedings of the Tennessee Topology Conference, Nashville, TN, USA, June 10-11, 1996 World Scientific Singapore P. R. Misra et al. 167-198 (1997). | MR | Zbl

[11] Douwen, E. K. van, Lutzer, D. J.: A note on paracompactness in generalized ordered spaces. Proc. Am. Math. Soc. 125 (1997), 1237-1245. | DOI | MR

[12] Douwen, E. K. van, Pfeffer, W. F.: Some properties of the Sorgenfrey line and related spaces. Pac. J. Math. 81 (1979), 371-377. | DOI | MR

Cité par Sources :