Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 721-761
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Hom-Lie algebra (superalgebra) structure appeared naturally in $q$-deformations, based on $\sigma $-derivations of Witt and Virasoro algebras (superalgebras). They are a twisted version of Lie algebras (superalgebras), obtained by deforming the Jacobi identity by a homomorphism. In this paper, we discuss the concept of $\alpha ^k$-derivation, a representation theory, and provide a cohomology complex of Hom-Lie superalgebras. Moreover, we study central extensions. As application, we compute derivations and the second cohomology group of a twisted ${\rm osp}(1,2)$ superalgebra and $q$-deformed Witt superalgebra.
Hom-Lie algebra (superalgebra) structure appeared naturally in $q$-deformations, based on $\sigma $-derivations of Witt and Virasoro algebras (superalgebras). They are a twisted version of Lie algebras (superalgebras), obtained by deforming the Jacobi identity by a homomorphism. In this paper, we discuss the concept of $\alpha ^k$-derivation, a representation theory, and provide a cohomology complex of Hom-Lie superalgebras. Moreover, we study central extensions. As application, we compute derivations and the second cohomology group of a twisted ${\rm osp}(1,2)$ superalgebra and $q$-deformed Witt superalgebra.
DOI : 10.1007/s10587-013-0049-6
Classification : 17A70, 17B56, 17B68
Keywords: Hom-Lie superalgebra; derivation; cohomology; $q$-deformed superalgebra
@article{10_1007_s10587_013_0049_6,
     author = {Ammar, Faouzi and Makhlouf, Abdenacer and Saadaoui, Nejib},
     title = {Cohomology of {Hom-Lie} superalgebras and $q$-deformed {Witt} superalgebra},
     journal = {Czechoslovak Mathematical Journal},
     pages = {721--761},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0049-6},
     mrnumber = {3125651},
     zbl = {06282107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0049-6/}
}
TY  - JOUR
AU  - Ammar, Faouzi
AU  - Makhlouf, Abdenacer
AU  - Saadaoui, Nejib
TI  - Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 721
EP  - 761
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0049-6/
DO  - 10.1007/s10587-013-0049-6
LA  - en
ID  - 10_1007_s10587_013_0049_6
ER  - 
%0 Journal Article
%A Ammar, Faouzi
%A Makhlouf, Abdenacer
%A Saadaoui, Nejib
%T Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra
%J Czechoslovak Mathematical Journal
%D 2013
%P 721-761
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0049-6/
%R 10.1007/s10587-013-0049-6
%G en
%F 10_1007_s10587_013_0049_6
Ammar, Faouzi; Makhlouf, Abdenacer; Saadaoui, Nejib. Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 721-761. doi: 10.1007/s10587-013-0049-6

[1] Aizawa, N., Sato, H.: $q$-deformation of the Virasoro algebra with central extension. Phys. Lett. B 256 (1991), 185-190. | DOI | MR

[2] Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras. J. Lie Theory 21 (2011), 813-836. | MR | Zbl

[3] Ammar, F., Makhlouf, A.: Hom-Lie superalgebras and Hom-Lie admissible superalgebras. J. Algebra 324 (2010), 1513-1528. | DOI | MR | Zbl

[4] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. Submitted to J. Geom. Phys.

[5] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations. J. Algebra 295 (2006), 314-361. | DOI | MR | Zbl

[6] Hu, N.: $q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations. Algebra Colloq. 6 (1999), 51-70. | MR | Zbl

[7] Larsson, D., Silvestrov, S. D.: Quasi-hom-Lie algebras, central extensions and $2$-cocyclelike identities. J. Algebra 288 (2005), 321-344. | DOI | MR

[8] Larsson, D., Silvestrov, S. D.: Quasi-Lie algebras. Noncommutative Geometry and Representation Theory in Mathematical Physics. Satellite conference to the fourth European congress of mathematics, July 5-10, 2004, Karlstad, Sweden. Contemporary Mathematics 391 J. Fuchs American Mathematical Society Providence, RI (2005), 241-248. | MR | Zbl

[9] Larsson, D., Silvestrov, S. D.: Quasi-deformations of $sl_2(\mathbb{F})$ using twisted derivations. Commun. Algebra 35 (2007), 4303-4318. | DOI | MR

[10] Larsson, D., Silvestrov, S. D.: Graded quasi-Lie algebras. Czechoslovak J. Phys. 55 (2005), 1473-1478. | DOI | MR

[11] Liu, K.: Characterizations of quantum Witt algebra. Lett. Math. Phys. 24 (1992), 257-265. | DOI | MR

[12] Makhlouf, A.: Paradigm of nonassociative Hom-algebras and Hom-superalgebras. Proceedings of Jordan Structures in Algebra and Analysis Meeting. Tribute to El Amin Kaidi for his 60th birthday, Almería, Spain, May 20-22, 2009 J. Carmona Tapia et al. Univ. de Almería, Departamento de Álgebra y Análisis Matemático Almería (2010), 143-177. | MR | Zbl

[13] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64. | DOI | MR | Zbl

[14] Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. Generalized Lie Theory in Mathematics, Physics and Beyond S. Silvestrov et al. Springer Berlin (2009), 189-206. | MR | Zbl

[15] Makhlouf, A., Silvestrov, S. D.: Notes on $1$-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 22 (2010), 715-759. | DOI | MR | Zbl

[16] Scheunert, M.: Generalized Lie algebras. J. Math. Phys. 20 (1979), 712-720. | DOI | MR | Zbl

[17] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716. Springer Berlin (1979). | DOI | MR

[18] Scheunert, M., Zhang, R. B.: Cohomology of Lie superalgebras and their generalizations. J. Math. Phys. 39 (1998), 5024-5061. | DOI | MR | Zbl

[19] Sheng, Y.: Representations of Hom-Lie algebras. Algebr. Represent. Theory 15 (2012), 1081-1098. | DOI | MR

[20] Yau, D.: Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2 (2008), 95-108. | DOI | MR | Zbl

[21] Yau, D.: Hom-algebras and homology. J. Lie Theory 19 (2009), 409-421. | MR | Zbl

[22] Yau, D.: Hom-bialgebras and comodule Hom-algebras. Int. Electron. J. Algebra 8 (2010), 45-64. | MR | Zbl

[23] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. | MR | Zbl

Cité par Sources :