Keywords: Hom-Lie superalgebra; derivation; cohomology; $q$-deformed superalgebra
@article{10_1007_s10587_013_0049_6,
author = {Ammar, Faouzi and Makhlouf, Abdenacer and Saadaoui, Nejib},
title = {Cohomology of {Hom-Lie} superalgebras and $q$-deformed {Witt} superalgebra},
journal = {Czechoslovak Mathematical Journal},
pages = {721--761},
year = {2013},
volume = {63},
number = {3},
doi = {10.1007/s10587-013-0049-6},
mrnumber = {3125651},
zbl = {06282107},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0049-6/}
}
TY - JOUR AU - Ammar, Faouzi AU - Makhlouf, Abdenacer AU - Saadaoui, Nejib TI - Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra JO - Czechoslovak Mathematical Journal PY - 2013 SP - 721 EP - 761 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0049-6/ DO - 10.1007/s10587-013-0049-6 LA - en ID - 10_1007_s10587_013_0049_6 ER -
%0 Journal Article %A Ammar, Faouzi %A Makhlouf, Abdenacer %A Saadaoui, Nejib %T Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra %J Czechoslovak Mathematical Journal %D 2013 %P 721-761 %V 63 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0049-6/ %R 10.1007/s10587-013-0049-6 %G en %F 10_1007_s10587_013_0049_6
Ammar, Faouzi; Makhlouf, Abdenacer; Saadaoui, Nejib. Cohomology of Hom-Lie superalgebras and $q$-deformed Witt superalgebra. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 721-761. doi: 10.1007/s10587-013-0049-6
[1] Aizawa, N., Sato, H.: $q$-deformation of the Virasoro algebra with central extension. Phys. Lett. B 256 (1991), 185-190. | DOI | MR
[2] Ammar, F., Ejbehi, Z., Makhlouf, A.: Cohomology and deformations of Hom-algebras. J. Lie Theory 21 (2011), 813-836. | MR | Zbl
[3] Ammar, F., Makhlouf, A.: Hom-Lie superalgebras and Hom-Lie admissible superalgebras. J. Algebra 324 (2010), 1513-1528. | DOI | MR | Zbl
[4] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. Submitted to J. Geom. Phys.
[5] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations. J. Algebra 295 (2006), 314-361. | DOI | MR | Zbl
[6] Hu, N.: $q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations. Algebra Colloq. 6 (1999), 51-70. | MR | Zbl
[7] Larsson, D., Silvestrov, S. D.: Quasi-hom-Lie algebras, central extensions and $2$-cocyclelike identities. J. Algebra 288 (2005), 321-344. | DOI | MR
[8] Larsson, D., Silvestrov, S. D.: Quasi-Lie algebras. Noncommutative Geometry and Representation Theory in Mathematical Physics. Satellite conference to the fourth European congress of mathematics, July 5-10, 2004, Karlstad, Sweden. Contemporary Mathematics 391 J. Fuchs American Mathematical Society Providence, RI (2005), 241-248. | MR | Zbl
[9] Larsson, D., Silvestrov, S. D.: Quasi-deformations of $sl_2(\mathbb{F})$ using twisted derivations. Commun. Algebra 35 (2007), 4303-4318. | DOI | MR
[10] Larsson, D., Silvestrov, S. D.: Graded quasi-Lie algebras. Czechoslovak J. Phys. 55 (2005), 1473-1478. | DOI | MR
[11] Liu, K.: Characterizations of quantum Witt algebra. Lett. Math. Phys. 24 (1992), 257-265. | DOI | MR
[12] Makhlouf, A.: Paradigm of nonassociative Hom-algebras and Hom-superalgebras. Proceedings of Jordan Structures in Algebra and Analysis Meeting. Tribute to El Amin Kaidi for his 60th birthday, Almería, Spain, May 20-22, 2009 J. Carmona Tapia et al. Univ. de Almería, Departamento de Álgebra y Análisis Matemático Almería (2010), 143-177. | MR | Zbl
[13] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64. | DOI | MR | Zbl
[14] Makhlouf, A., Silvestrov, S.: Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. Generalized Lie Theory in Mathematics, Physics and Beyond S. Silvestrov et al. Springer Berlin (2009), 189-206. | MR | Zbl
[15] Makhlouf, A., Silvestrov, S. D.: Notes on $1$-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 22 (2010), 715-759. | DOI | MR | Zbl
[16] Scheunert, M.: Generalized Lie algebras. J. Math. Phys. 20 (1979), 712-720. | DOI | MR | Zbl
[17] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716. Springer Berlin (1979). | DOI | MR
[18] Scheunert, M., Zhang, R. B.: Cohomology of Lie superalgebras and their generalizations. J. Math. Phys. 39 (1998), 5024-5061. | DOI | MR | Zbl
[19] Sheng, Y.: Representations of Hom-Lie algebras. Algebr. Represent. Theory 15 (2012), 1081-1098. | DOI | MR
[20] Yau, D.: Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2 (2008), 95-108. | DOI | MR | Zbl
[21] Yau, D.: Hom-algebras and homology. J. Lie Theory 19 (2009), 409-421. | MR | Zbl
[22] Yau, D.: Hom-bialgebras and comodule Hom-algebras. Int. Electron. J. Algebra 8 (2010), 45-64. | MR | Zbl
[23] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. | MR | Zbl
Cité par Sources :