Keywords: Laplacian matrix; signless Laplacian matrix; normalized Laplacian matrix; characteristic polynomial
@article{10_1007_s10587_013_0048_7,
author = {Guo, Ji-Ming and Li, Jianxi and Shiu, Wai Chee},
title = {On the {Laplacian,} signless {Laplacian} and normalized {Laplacian} characteristic polynomials of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {701--720},
year = {2013},
volume = {63},
number = {3},
doi = {10.1007/s10587-013-0048-7},
mrnumber = {3125650},
zbl = {06282106},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0048-7/}
}
TY - JOUR AU - Guo, Ji-Ming AU - Li, Jianxi AU - Shiu, Wai Chee TI - On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph JO - Czechoslovak Mathematical Journal PY - 2013 SP - 701 EP - 720 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0048-7/ DO - 10.1007/s10587-013-0048-7 LA - en ID - 10_1007_s10587_013_0048_7 ER -
%0 Journal Article %A Guo, Ji-Ming %A Li, Jianxi %A Shiu, Wai Chee %T On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph %J Czechoslovak Mathematical Journal %D 2013 %P 701-720 %V 63 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0048-7/ %R 10.1007/s10587-013-0048-7 %G en %F 10_1007_s10587_013_0048_7
Guo, Ji-Ming; Li, Jianxi; Shiu, Wai Chee. On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 701-720. doi: 10.1007/s10587-013-0048-7
[1] Berge, C.: Principles of Combinatorics. Mathematics in Science and Engineering vol. 72. Academic Press New York (1971). | MR
[2] Butler, S.: A note about cospectral graphs for the adjacency and normalized Laplacian matrices. Linear Multilinear Algebra 58 (2010), 387-390. | DOI | MR | Zbl
[3] Chung, F. R. K.: Spectral Graph Theory. Regional Conference Series in Mathematics 92. American Mathematical Society Providence (1997). | MR
[4] Grone, R., Merris, R.: Ordering trees by algebraic connectivity. Graphs Comb. 6 (1990), 229-237. | DOI | MR | Zbl
[5] Guo, J.: On the second largest Laplacian eigenvalue of trees. Linear Algebra Appl. 404 (2005), 251-261. | DOI | MR | Zbl
[6] Guo, J.-M.: On the Laplacian spectral radius of trees with fixed diameter. Linear Algebra Appl. 419 (2006), 618-629. | MR | Zbl
[7] Guo, J.-M.: A conjecture on the algebraic connectivity of connected graphs with fixed girth. Discrete Math. 308 (2008), 5702-5711. | DOI | MR | Zbl
[8] Liu, Y., Liu, Y.: The ordering of unicyclic graphs with the smallest algebraic connectivity. Discrete Math. 309 (2009), 4315-4325. | DOI | MR | Zbl
[9] Schwenk, A. J.: Computing the characteristic polynomial of a graph. Graphs and Combinatorics. Proceedings of the Capital Conference on Graph Theory and Combinatorics at the George Washington University, June 18-22, 1973. Lecture Notes in Mathematics 406 R. A. Bari et al. Springer Berlin (1974), 153-172. | MR | Zbl
[10] Shao, J. Y., Guo, J. M., Shan, H. Y.: The ordering of trees and connected graphs by algebraic connectivity. Linear Algebra Appl. 428 (2008), 1421-1438. | MR | Zbl
[11] Yuan, X. Y., Shao, J. Y., Zhang, L.: The six classes of trees with the largest algebraic connectivity. Discrete Appl. Math. 156 (2008), 757-769. | DOI | MR | Zbl
[12] Zhang, X. D.: Ordering trees with algebraic connectivity and diameter. Linear Algebra Appl. 427 (2007), 301-312. | MR | Zbl
Cité par Sources :