Trajectories, first return limiting notions and rings of $H$-connected and iteratively $H$-connected functions
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 679-700
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper the existing results concerning a special kind of trajectories and the theory of first return continuous functions connected with them are used to examine some algebraic properties of classes of functions. To that end we define a new class of functions (denoted $Conn^*$) contained between the families (widely described in literature) of Darboux Baire 1 functions (${\rm DB}_1$) and connectivity functions ($Conn$). The solutions to our problems are based, among other, on the suitable construction of the ring, which turned out to be in some senses an “optimal construction“. These considerations concern mainly real functions defined on $[0,1]$ but in the last chapter we also extend them to the case of real valued iteratively $H$-connected functions defined on topological spaces.
In the paper the existing results concerning a special kind of trajectories and the theory of first return continuous functions connected with them are used to examine some algebraic properties of classes of functions. To that end we define a new class of functions (denoted $Conn^*$) contained between the families (widely described in literature) of Darboux Baire 1 functions (${\rm DB}_1$) and connectivity functions ($Conn$). The solutions to our problems are based, among other, on the suitable construction of the ring, which turned out to be in some senses an “optimal construction“. These considerations concern mainly real functions defined on $[0,1]$ but in the last chapter we also extend them to the case of real valued iteratively $H$-connected functions defined on topological spaces.
DOI : 10.1007/s10587-013-0047-8
Classification : 26A15, 26A21, 54C30, 54C40, 54H20
Keywords: trajectory; first return continuity; $H$-connected function; ring of functions; D-ring; iteratively $H$-connected function
@article{10_1007_s10587_013_0047_8,
     author = {Korczak-Kubiak, Ewa and Pawlak, Ryszard J.},
     title = {Trajectories, first return limiting notions and rings of $H$-connected and iteratively $H$-connected functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {679--700},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0047-8},
     mrnumber = {3125649},
     zbl = {06282105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0047-8/}
}
TY  - JOUR
AU  - Korczak-Kubiak, Ewa
AU  - Pawlak, Ryszard J.
TI  - Trajectories, first return limiting notions and rings of $H$-connected and iteratively $H$-connected functions
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 679
EP  - 700
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0047-8/
DO  - 10.1007/s10587-013-0047-8
LA  - en
ID  - 10_1007_s10587_013_0047_8
ER  - 
%0 Journal Article
%A Korczak-Kubiak, Ewa
%A Pawlak, Ryszard J.
%T Trajectories, first return limiting notions and rings of $H$-connected and iteratively $H$-connected functions
%J Czechoslovak Mathematical Journal
%D 2013
%P 679-700
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0047-8/
%R 10.1007/s10587-013-0047-8
%G en
%F 10_1007_s10587_013_0047_8
Korczak-Kubiak, Ewa; Pawlak, Ryszard J. Trajectories, first return limiting notions and rings of $H$-connected and iteratively $H$-connected functions. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 679-700. doi: 10.1007/s10587-013-0047-8

[1] Bąkowska, A., Loranty, A., Pawlak, R. J.: On the topological entropy of continuous and almost continuous functions. Topology Appl. 158 (2011), 2022-2033. | DOI | MR | Zbl

[2] Biś, A., Nakayama, H., Walczak, P.: Modelling minimal foliated spaces with positive entropy. Hokkaido Math. J. 36 (2007), 283-310. | DOI | MR | Zbl

[3] Borsík, J.: Algebraic structures generated by real quasicontinuous functions. Tatra Mt. Math. Publ. 8 (1996), 175-184. | MR | Zbl

[4] Borsík, J.: Sums, differences, products and quotients of closed graph functions. Tatra Mt. Math. Publ. 24 (2002), 117-123. | MR | Zbl

[5] Bruckner, A. M.: Differentiation of Real Functions. Lecture Notes in Mathematics 659. Springer Berlin (1978). | MR

[6] Čiklová, M.: Dynamical systems generated by functions with connected $G_{\delta}$ graphs. Real Anal. Exch. 30 (2004/2005), 617-638. | DOI | MR

[7] Darji, U. B., Evans, M. J., Freiling, C., O'Malley, R. J.: Fine properties of Baire one functions. Fundam. Math. 155 (1998), 177-188. | MR | Zbl

[8] Darji, U. B., Evans, M. J., O'Malley, R. J.: A first return characterization for Baire one functions. Real Anal. Exch. 19 (1994), 510-515. | DOI | MR | Zbl

[9] Darji, U. B., Evans, M. J., O'Malley, R. J.: First return path systems: Differentiability, continuity, and orderings. Acta Math. Hung. 66 (1995), 83-103. | DOI | MR | Zbl

[10] Evans, M. J., O'Malley, R. J.: First-return limiting notions in real analysis. Real Anal. Exch. 29 (2003/2004), 503-530. | DOI | MR

[11] Gibson, R. G., Natkaniec, T.: Darboux like functions. Real Anal. Exch. 22 (1996), 492-533. | DOI | MR

[12] Grande, Z.: On the Darboux property of the sum of cliquish functions. Real Anal. Exch. 17 (1992), 571-576. | DOI | MR | Zbl

[13] Grande, Z.: On the sums and products of Darboux Baire*1 functions. Real Anal. Exch. 18 (1993), 237-240. | DOI | MR

[14] Kellum, K. R.: Iterates of almost continuous functions and Sarkovskii's theorem. Real Anal. Exch. 14 (1989), 420-422. | DOI | MR | Zbl

[15] Korczak, E., Pawlak, R. J.: On some properties of essential Darboux rings of real functions defined on topological spaces. Real Anal. Exch. 30 (2004/2005), 495-506. | MR

[16] Maliszewski, A.: Maximums of almost continuous functions. Real Anal. Exch. 30 (2004/2005), 813-818. | DOI | MR

[17] Maliszewski, A.: Maximums of Darboux Baire one functions. Math. Slovaca 56 (2006), 427-431. | MR | Zbl

[18] Mikucka, A.: Graph quasi-continuity. Demonstr. Math. 36 (2003), 483-494. | DOI | MR | Zbl

[19] O'Malley, R. J.: First return path derivatives. Proc. Am. Math. Soc. 116 (1992), 73-77. | DOI | MR | Zbl

[20] Pawlak, R. J.: On some class of functions intermediate between the class $B_1^*$ and the family of continuous functions. Tatra Mt. Math. Publ. 19 (2000), 135-144. | MR | Zbl

[21] Pawlak, H., Pawlak, R. J.: First-return limiting notions and rings of Sharkovsky functions. Real Anal. Exch. 34 (2009), 549-563. | DOI | MR | Zbl

[22] Pawlak, R. J.: On the entropy of Darboux functions. Colloq. Math. 116 (2009), 227-241. | DOI | MR | Zbl

[23] Szuca, P.: Sharkovskiǐ's theorem holds for some discontinuous functions. Fundam. Math. 179 (2003), 27-41. | DOI | MR | Zbl

[24] Szuca, P.: Connected $G_{\delta}$ functions of arbitrarily high Borel class. Tatra Mt. Math. Publ. 35 (2007), 41-45. | MR | Zbl

[25] Vedenissoff, N.: Sur les fonctions continues dans des espaces topologiques. Fundam. Math. 27 (1936), 234-238 French. | DOI | Zbl

Cité par Sources :