Keywords: 5-connected graph; contractible subgraph; minor minimally $k$-connected
@article{10_1007_s10587_013_0046_9,
author = {Qin, Chengfu and Guo, Xiaofeng and Yang, Weihua},
title = {The contractible subgraph of $5$-connected graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {671--677},
year = {2013},
volume = {63},
number = {3},
doi = {10.1007/s10587-013-0046-9},
mrnumber = {3125648},
zbl = {06282104},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0046-9/}
}
TY - JOUR AU - Qin, Chengfu AU - Guo, Xiaofeng AU - Yang, Weihua TI - The contractible subgraph of $5$-connected graphs JO - Czechoslovak Mathematical Journal PY - 2013 SP - 671 EP - 677 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0046-9/ DO - 10.1007/s10587-013-0046-9 LA - en ID - 10_1007_s10587_013_0046_9 ER -
%0 Journal Article %A Qin, Chengfu %A Guo, Xiaofeng %A Yang, Weihua %T The contractible subgraph of $5$-connected graphs %J Czechoslovak Mathematical Journal %D 2013 %P 671-677 %V 63 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0046-9/ %R 10.1007/s10587-013-0046-9 %G en %F 10_1007_s10587_013_0046_9
Qin, Chengfu; Guo, Xiaofeng; Yang, Weihua. The contractible subgraph of $5$-connected graphs. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 671-677. doi: 10.1007/s10587-013-0046-9
[1] Ando, K., Qin, C.: Some structural properties of minimally contraction-critically $5$-connected graphs. Discrete Math. 311 (2011), 1084-1097. | DOI | MR | Zbl
[2] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. American Elsevier Publishing New York (1976). | MR
[3] Fijavž, G.: Graph Minors and Connectivity. Ph.D. Thesis. University of Ljubljana (2001).
[4] Kriesell, M.: Triangle density and contractibility. Comb. Probab. Comput. 14 (2005), 133-146. | DOI | MR | Zbl
[5] Kriesell, M.: How to contract an essentially $6$-connected graph to a $5$-connected graph. Discrete Math. 307 (2007), 494-510. | DOI | MR | Zbl
[6] Mader, W.: Generalizations of critical connectivity of graphs. Proceedings of the first Japan conference on graph theory and applications. Hakone, Japan, June 1-5, 1986. Discrete Mathematics {\it 72} J. Akiyama, Y. Egawa, H. Enomoto North-Holland Amsterdam (1988), 267-283. | DOI | MR
[7] Qin, C., Yuan, X., Su, J.: Triangles in contraction critical $5$-connected graphs. Australas. J. Comb. 33 (2005), 139-146. | MR | Zbl
[8] Tutte, W. T.: A theory of $3$-connected graphs. Nederl. Akad. Wet., Proc., Ser. A 64 (1961), 441-455. | MR | Zbl
Cité par Sources :