Weak solutions for elliptic systems with variable growth in Clifford analysis
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 643-670
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we consider the following Dirichlet problem for elliptic systems: $$ \begin {aligned} \overline {DA(x,u(x),Du(x))}=(x,u(x),Du(x)),\quad x\in \Omega ,\cr u(x)=0,\quad x\in \partial \Omega , \end {aligned} $$ where $D$ is a Dirac operator in Euclidean space, $u(x)$ is defined in a bounded Lipschitz domain $\Omega $ in $\mathbb {R}^{n}$ and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space $W_{0}^{1,p(x)}(\Omega , {\rm C}\ell _{n})$ under appropriate assumptions.
In this paper we consider the following Dirichlet problem for elliptic systems: $$ \begin {aligned} \overline {DA(x,u(x),Du(x))}=(x,u(x),Du(x)),\quad x\in \Omega ,\cr u(x)=0,\quad x\in \partial \Omega , \end {aligned} $$ where $D$ is a Dirac operator in Euclidean space, $u(x)$ is defined in a bounded Lipschitz domain $\Omega $ in $\mathbb {R}^{n}$ and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space $W_{0}^{1,p(x)}(\Omega , {\rm C}\ell _{n})$ under appropriate assumptions.
DOI : 10.1007/s10587-013-0045-x
Classification : 30G35, 35D30, 35J60, 46E35
Keywords: elliptic system; Clifford analysis; variable exponent; Dirichlet problem
@article{10_1007_s10587_013_0045_x,
     author = {Fu, Yongqiang and Zhang, Binlin},
     title = {Weak solutions for elliptic systems with variable growth in {Clifford} analysis},
     journal = {Czechoslovak Mathematical Journal},
     pages = {643--670},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0045-x},
     mrnumber = {3125647},
     zbl = {06282103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/}
}
TY  - JOUR
AU  - Fu, Yongqiang
AU  - Zhang, Binlin
TI  - Weak solutions for elliptic systems with variable growth in Clifford analysis
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 643
EP  - 670
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/
DO  - 10.1007/s10587-013-0045-x
LA  - en
ID  - 10_1007_s10587_013_0045_x
ER  - 
%0 Journal Article
%A Fu, Yongqiang
%A Zhang, Binlin
%T Weak solutions for elliptic systems with variable growth in Clifford analysis
%J Czechoslovak Mathematical Journal
%D 2013
%P 643-670
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/
%R 10.1007/s10587-013-0045-x
%G en
%F 10_1007_s10587_013_0045_x
Fu, Yongqiang; Zhang, Binlin. Weak solutions for elliptic systems with variable growth in Clifford analysis. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 643-670. doi: 10.1007/s10587-013-0045-x

[1] Abłamowicz, R., Fauser, B., eds.: Clifford Algebras and Their Applications in Mathematical Physics. Proceedings of the 5th Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 1: Algebra and Physics. Progress in Physics 18 Birkhäuser, Boston (2000). | MR

[2] Abreu-Blaya, R., Bory-Reyes, J., Delanghe, R., Sommen, F.: Duality for harmonic differential forms via Clifford analysis. Adv. Appl. Clifford Algebr. 17 (2007), 589-610. | DOI | MR | Zbl

[3] Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984), 125-135. | DOI | MR | Zbl

[4] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext Springer, New York (2011). | MR | Zbl

[5] Dacorogna, B.: Weak Continuity and Weak Lower Semi-Continuity of Non-Linear Functionals. Lecture Notes in Mathematics 922 Springer, Berlin (1982). | DOI | MR | Zbl

[6] Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator. Related REDUCE Software by F. Brackx and D. Constales. Mathematics and its Applications Kluwer Academic Publishers, Dordrecht (1992). | MR | Zbl

[7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl

[8] Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press Cambridge (2003). | MR | Zbl

[9] Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Unabridged, corrected republication of the 1976 English original. Classics in Applied Mathematics 28 Society for Industrial and Applied Mathematics, Philadelphia (1999). | MR | Zbl

[10] Eisen, G.: A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals. Manuscr. Math. 27 (1979), 73-79. | DOI | MR | Zbl

[11] Fan, X., Zhao, D.: On the spaces $L^{p(x)}\{\Omega\}$ and $W^{m,p(x)}\{\Omega\}$. J. Math. Anal. Appl. 263 (2001), 424-446. | MR | Zbl

[12] Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$. J. Math. Anal. Appl. 262 (2001), 749-760. | DOI | MR | Zbl

[13] Fan, X., Zhang, Q.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. | DOI | MR | Zbl

[14] Fu, Y.: Weak solution for obstacle problem with variable growth. Nonlinear Anal., Theory Methods Appl. 59 (2004), 371-383. | DOI | MR | Zbl

[15] Fu, Y., Dong, Z., Yan, Y.: On the existence of weak solutions for a class of elliptic partial differential systems. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 48 (2002), 961-977. | DOI | MR | Zbl

[16] Fu, Y., Zhang, B.: Clifford valued weighted variable exponent spaces with an application to obstacle problems. Advances in Applied Clifford Algebras 23 (2013), 363-376. | DOI | MR

[17] Gilbert, J. E., Murray, M. A. M.: Clifford Algebra and Dirac Operators in Harmonic Analysis. Paperback reprint of the hardback edition 1991. Cambridge Studies in Advanced Mathematics 26 Cambridge University Press, Cambridge (2008). | MR

[18] Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Mathematical Methods in Practice Wiley, Chichester (1997). | Zbl

[19] Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and $n$-dimensional Space. Transl. from the German Birkhäuser, Basel (2008). | MR | Zbl

[20] Gürlebeck, K., Kähler, U., Ryan, J., Sprößig, W.: Clifford analysis over unbounded domains. Adv. Appl. Math. 19 (1997), 216-239. | DOI | MR | Zbl

[21] Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. International Series of Numerical Mathematics 89 Birkhäuser, Basel (1990). | MR | Zbl

[22] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574. | DOI | MR | Zbl

[23] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Unabridged republication of the 1993 original Dover Publications, Mineola (2006). | MR | Zbl

[24] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR

[25] Liu, F.: A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26 (1977), 645-651. | DOI | MR | Zbl

[26] Morrey, C. B.: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften 130 Springer, Berlin (1966). | DOI | MR | Zbl

[27] Nolder, C. A.: $A$-harmonic equations and the Dirac operator. J. Inequal. Appl. (2010), Article ID 124018, 9 pages. | MR | Zbl

[28] Nolder, C. A.: Nonlinear $A$-Dirac equations. Adv. Appl. Clifford Algebr. 21 (2011), 429-440. | DOI | MR | Zbl

[29] Nolder, C. A., Ryan, J.: $p$-Dirac operators. Adv. Appl. Clifford Algebr. 19 (2009), 391-402. | DOI | MR | Zbl

[30] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748 Springer, Berlin (2000). | DOI | MR | Zbl

[31] Ryan, J., Sprößig, W., eds.: Clifford Algebras and Their Applications in Mathematical Physics. Papers of the 5th International Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 2: Clifford Analysis. Progress in Physics 19 Birkhäuser, Boston (2000). | MR

Cité par Sources :