Weak solutions for elliptic systems with variable growth in Clifford analysis
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 643-670.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we consider the following Dirichlet problem for elliptic systems: $$ \begin {aligned} \overline {DA(x,u(x),Du(x))}=(x,u(x),Du(x)),\quad x\in \Omega ,\cr u(x)=0,\quad x\in \partial \Omega , \end {aligned} $$ where $D$ is a Dirac operator in Euclidean space, $u(x)$ is defined in a bounded Lipschitz domain $\Omega $ in $\mathbb {R}^{n}$ and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space $W_{0}^{1,p(x)}(\Omega , {\rm C}\ell _{n})$ under appropriate assumptions.
DOI : 10.1007/s10587-013-0045-x
Classification : 30G35, 35D30, 35J60, 46E35
Keywords: elliptic system; Clifford analysis; variable exponent; Dirichlet problem
@article{10_1007_s10587_013_0045_x,
     author = {Fu, Yongqiang and Zhang, Binlin},
     title = {Weak solutions for elliptic systems with variable growth in {Clifford} analysis},
     journal = {Czechoslovak Mathematical Journal},
     pages = {643--670},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2013},
     doi = {10.1007/s10587-013-0045-x},
     mrnumber = {3125647},
     zbl = {06282103},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/}
}
TY  - JOUR
AU  - Fu, Yongqiang
AU  - Zhang, Binlin
TI  - Weak solutions for elliptic systems with variable growth in Clifford analysis
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 643
EP  - 670
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/
DO  - 10.1007/s10587-013-0045-x
LA  - en
ID  - 10_1007_s10587_013_0045_x
ER  - 
%0 Journal Article
%A Fu, Yongqiang
%A Zhang, Binlin
%T Weak solutions for elliptic systems with variable growth in Clifford analysis
%J Czechoslovak Mathematical Journal
%D 2013
%P 643-670
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/
%R 10.1007/s10587-013-0045-x
%G en
%F 10_1007_s10587_013_0045_x
Fu, Yongqiang; Zhang, Binlin. Weak solutions for elliptic systems with variable growth in Clifford analysis. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 643-670. doi : 10.1007/s10587-013-0045-x. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/

Cité par Sources :