Weak solutions for elliptic systems with variable growth in Clifford analysis
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 643-670
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper we consider the following Dirichlet problem for elliptic systems: $$ \begin {aligned} \overline {DA(x,u(x),Du(x))}=(x,u(x),Du(x)),\quad x\in \Omega ,\cr u(x)=0,\quad x\in \partial \Omega , \end {aligned} $$ where $D$ is a Dirac operator in Euclidean space, $u(x)$ is defined in a bounded Lipschitz domain $\Omega $ in $\mathbb {R}^{n}$ and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space $W_{0}^{1,p(x)}(\Omega , {\rm C}\ell _{n})$ under appropriate assumptions.
In this paper we consider the following Dirichlet problem for elliptic systems: $$ \begin {aligned} \overline {DA(x,u(x),Du(x))}=(x,u(x),Du(x)),\quad x\in \Omega ,\cr u(x)=0,\quad x\in \partial \Omega , \end {aligned} $$ where $D$ is a Dirac operator in Euclidean space, $u(x)$ is defined in a bounded Lipschitz domain $\Omega $ in $\mathbb {R}^{n}$ and takes value in Clifford algebras. We first introduce variable exponent Sobolev spaces of Clifford-valued functions, then discuss the properties of these spaces and the related operator theory in these spaces. Using the Galerkin method, we obtain the existence of weak solutions to the scalar part of the above-mentioned systems in the space $W_{0}^{1,p(x)}(\Omega , {\rm C}\ell _{n})$ under appropriate assumptions.
DOI :
10.1007/s10587-013-0045-x
Classification :
30G35, 35D30, 35J60, 46E35
Keywords: elliptic system; Clifford analysis; variable exponent; Dirichlet problem
Keywords: elliptic system; Clifford analysis; variable exponent; Dirichlet problem
@article{10_1007_s10587_013_0045_x,
author = {Fu, Yongqiang and Zhang, Binlin},
title = {Weak solutions for elliptic systems with variable growth in {Clifford} analysis},
journal = {Czechoslovak Mathematical Journal},
pages = {643--670},
year = {2013},
volume = {63},
number = {3},
doi = {10.1007/s10587-013-0045-x},
mrnumber = {3125647},
zbl = {06282103},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/}
}
TY - JOUR AU - Fu, Yongqiang AU - Zhang, Binlin TI - Weak solutions for elliptic systems with variable growth in Clifford analysis JO - Czechoslovak Mathematical Journal PY - 2013 SP - 643 EP - 670 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/ DO - 10.1007/s10587-013-0045-x LA - en ID - 10_1007_s10587_013_0045_x ER -
%0 Journal Article %A Fu, Yongqiang %A Zhang, Binlin %T Weak solutions for elliptic systems with variable growth in Clifford analysis %J Czechoslovak Mathematical Journal %D 2013 %P 643-670 %V 63 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/ %R 10.1007/s10587-013-0045-x %G en %F 10_1007_s10587_013_0045_x
Fu, Yongqiang; Zhang, Binlin. Weak solutions for elliptic systems with variable growth in Clifford analysis. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 643-670. doi: 10.1007/s10587-013-0045-x
Cité par Sources :