Keywords: elliptic system; Clifford analysis; variable exponent; Dirichlet problem
@article{10_1007_s10587_013_0045_x,
author = {Fu, Yongqiang and Zhang, Binlin},
title = {Weak solutions for elliptic systems with variable growth in {Clifford} analysis},
journal = {Czechoslovak Mathematical Journal},
pages = {643--670},
year = {2013},
volume = {63},
number = {3},
doi = {10.1007/s10587-013-0045-x},
mrnumber = {3125647},
zbl = {06282103},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/}
}
TY - JOUR AU - Fu, Yongqiang AU - Zhang, Binlin TI - Weak solutions for elliptic systems with variable growth in Clifford analysis JO - Czechoslovak Mathematical Journal PY - 2013 SP - 643 EP - 670 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/ DO - 10.1007/s10587-013-0045-x LA - en ID - 10_1007_s10587_013_0045_x ER -
%0 Journal Article %A Fu, Yongqiang %A Zhang, Binlin %T Weak solutions for elliptic systems with variable growth in Clifford analysis %J Czechoslovak Mathematical Journal %D 2013 %P 643-670 %V 63 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0045-x/ %R 10.1007/s10587-013-0045-x %G en %F 10_1007_s10587_013_0045_x
Fu, Yongqiang; Zhang, Binlin. Weak solutions for elliptic systems with variable growth in Clifford analysis. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 643-670. doi: 10.1007/s10587-013-0045-x
[1] Abłamowicz, R., Fauser, B., eds.: Clifford Algebras and Their Applications in Mathematical Physics. Proceedings of the 5th Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 1: Algebra and Physics. Progress in Physics 18 Birkhäuser, Boston (2000). | MR
[2] Abreu-Blaya, R., Bory-Reyes, J., Delanghe, R., Sommen, F.: Duality for harmonic differential forms via Clifford analysis. Adv. Appl. Clifford Algebr. 17 (2007), 589-610. | DOI | MR | Zbl
[3] Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984), 125-135. | DOI | MR | Zbl
[4] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext Springer, New York (2011). | MR | Zbl
[5] Dacorogna, B.: Weak Continuity and Weak Lower Semi-Continuity of Non-Linear Functionals. Lecture Notes in Mathematics 922 Springer, Berlin (1982). | DOI | MR | Zbl
[6] Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator. Related REDUCE Software by F. Brackx and D. Constales. Mathematics and its Applications Kluwer Academic Publishers, Dordrecht (1992). | MR | Zbl
[7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017 Springer, Berlin (2011). | MR | Zbl
[8] Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press Cambridge (2003). | MR | Zbl
[9] Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Unabridged, corrected republication of the 1976 English original. Classics in Applied Mathematics 28 Society for Industrial and Applied Mathematics, Philadelphia (1999). | MR | Zbl
[10] Eisen, G.: A selection lemma for sequences of measurable sets, and lower semicontinuity of multiple integrals. Manuscr. Math. 27 (1979), 73-79. | DOI | MR | Zbl
[11] Fan, X., Zhao, D.: On the spaces $L^{p(x)}\{\Omega\}$ and $W^{m,p(x)}\{\Omega\}$. J. Math. Anal. Appl. 263 (2001), 424-446. | MR | Zbl
[12] Fan, X., Shen, J., Zhao, D.: Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$. J. Math. Anal. Appl. 262 (2001), 749-760. | DOI | MR | Zbl
[13] Fan, X., Zhang, Q.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. | DOI | MR | Zbl
[14] Fu, Y.: Weak solution for obstacle problem with variable growth. Nonlinear Anal., Theory Methods Appl. 59 (2004), 371-383. | DOI | MR | Zbl
[15] Fu, Y., Dong, Z., Yan, Y.: On the existence of weak solutions for a class of elliptic partial differential systems. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 48 (2002), 961-977. | DOI | MR | Zbl
[16] Fu, Y., Zhang, B.: Clifford valued weighted variable exponent spaces with an application to obstacle problems. Advances in Applied Clifford Algebras 23 (2013), 363-376. | DOI | MR
[17] Gilbert, J. E., Murray, M. A. M.: Clifford Algebra and Dirac Operators in Harmonic Analysis. Paperback reprint of the hardback edition 1991. Cambridge Studies in Advanced Mathematics 26 Cambridge University Press, Cambridge (2008). | MR
[18] Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Mathematical Methods in Practice Wiley, Chichester (1997). | Zbl
[19] Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and $n$-dimensional Space. Transl. from the German Birkhäuser, Basel (2008). | MR | Zbl
[20] Gürlebeck, K., Kähler, U., Ryan, J., Sprößig, W.: Clifford analysis over unbounded domains. Adv. Appl. Math. 19 (1997), 216-239. | DOI | MR | Zbl
[21] Gürlebeck, K., Sprößig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. International Series of Numerical Mathematics 89 Birkhäuser, Basel (1990). | MR | Zbl
[22] Harjulehto, P., Hästö, P., Lê, Ú. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574. | DOI | MR | Zbl
[23] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Unabridged republication of the 1993 original Dover Publications, Mineola (2006). | MR | Zbl
[24] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR
[25] Liu, F.: A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26 (1977), 645-651. | DOI | MR | Zbl
[26] Morrey, C. B.: Multiple Integrals in the Calculus of Variations. Die Grundlehren der mathematischen Wissenschaften 130 Springer, Berlin (1966). | DOI | MR | Zbl
[27] Nolder, C. A.: $A$-harmonic equations and the Dirac operator. J. Inequal. Appl. (2010), Article ID 124018, 9 pages. | MR | Zbl
[28] Nolder, C. A.: Nonlinear $A$-Dirac equations. Adv. Appl. Clifford Algebr. 21 (2011), 429-440. | DOI | MR | Zbl
[29] Nolder, C. A., Ryan, J.: $p$-Dirac operators. Adv. Appl. Clifford Algebr. 19 (2009), 391-402. | DOI | MR | Zbl
[30] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics 1748 Springer, Berlin (2000). | DOI | MR | Zbl
[31] Ryan, J., Sprößig, W., eds.: Clifford Algebras and Their Applications in Mathematical Physics. Papers of the 5th International Conference, Ixtapa-Zihuatanejo, Mexico, June 27--July 4, 1999. Volume 2: Clifford Analysis. Progress in Physics 19 Birkhäuser, Boston (2000). | MR
Cité par Sources :