Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 603-627
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study recurrence and non-recurrence sets for dynamical systems on compact spaces, in particular for products of rotations on the unit circle $\mathbb T$. A set of integers is called $r$-Bohr if it is recurrent for all products of $r$ rotations on $\mathbb T$, and Bohr if it is recurrent for all products of rotations on $\mathbb T$. It is a result due to Katznelson that for each $r\ge 1$ there exist sets of integers which are $r$-Bohr but not $(r+1)$-Bohr. We present new examples of $r$-Bohr sets which are not Bohr, thanks to a construction which is both flexible and completely explicit. Our results are related to an old combinatorial problem of Veech concerning syndetic sets and the Bohr topology on $\mathbb Z$, and its reformulation in terms of recurrence sets which is due to Glasner and Weiss.
DOI :
10.1007/s10587-013-0043-z
Classification :
37A45, 37B05, 37B20
Keywords: recurrence for dynamical systems; non-recurrence for dynamical systems; rotations of the unit circle; syndetic set; Bohr topology on $\mathbb {Z}$; Bohr set; $r$-Bohr set
Keywords: recurrence for dynamical systems; non-recurrence for dynamical systems; rotations of the unit circle; syndetic set; Bohr topology on $\mathbb {Z}$; Bohr set; $r$-Bohr set
@article{10_1007_s10587_013_0043_z,
author = {Grivaux, Sophie and Roginskaya, Maria},
title = {Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle},
journal = {Czechoslovak Mathematical Journal},
pages = {603--627},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2013},
doi = {10.1007/s10587-013-0043-z},
mrnumber = {3125645},
zbl = {06282101},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0043-z/}
}
TY - JOUR AU - Grivaux, Sophie AU - Roginskaya, Maria TI - Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle JO - Czechoslovak Mathematical Journal PY - 2013 SP - 603 EP - 627 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0043-z/ DO - 10.1007/s10587-013-0043-z LA - en ID - 10_1007_s10587_013_0043_z ER -
%0 Journal Article %A Grivaux, Sophie %A Roginskaya, Maria %T Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle %J Czechoslovak Mathematical Journal %D 2013 %P 603-627 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0043-z/ %R 10.1007/s10587-013-0043-z %G en %F 10_1007_s10587_013_0043_z
Grivaux, Sophie; Roginskaya, Maria. Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 603-627. doi: 10.1007/s10587-013-0043-z
Cité par Sources :