Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 603-627.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study recurrence and non-recurrence sets for dynamical systems on compact spaces, in particular for products of rotations on the unit circle $\mathbb T$. A set of integers is called $r$-Bohr if it is recurrent for all products of $r$ rotations on $\mathbb T$, and Bohr if it is recurrent for all products of rotations on $\mathbb T$. It is a result due to Katznelson that for each $r\ge 1$ there exist sets of integers which are $r$-Bohr but not $(r+1)$-Bohr. We present new examples of $r$-Bohr sets which are not Bohr, thanks to a construction which is both flexible and completely explicit. Our results are related to an old combinatorial problem of Veech concerning syndetic sets and the Bohr topology on $\mathbb Z$, and its reformulation in terms of recurrence sets which is due to Glasner and Weiss.
DOI : 10.1007/s10587-013-0043-z
Classification : 37A45, 37B05, 37B20
Keywords: recurrence for dynamical systems; non-recurrence for dynamical systems; rotations of the unit circle; syndetic set; Bohr topology on $\mathbb {Z}$; Bohr set; $r$-Bohr set
@article{10_1007_s10587_013_0043_z,
     author = {Grivaux, Sophie and Roginskaya, Maria},
     title = {Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle},
     journal = {Czechoslovak Mathematical Journal},
     pages = {603--627},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2013},
     doi = {10.1007/s10587-013-0043-z},
     mrnumber = {3125645},
     zbl = {06282101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0043-z/}
}
TY  - JOUR
AU  - Grivaux, Sophie
AU  - Roginskaya, Maria
TI  - Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 603
EP  - 627
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0043-z/
DO  - 10.1007/s10587-013-0043-z
LA  - en
ID  - 10_1007_s10587_013_0043_z
ER  - 
%0 Journal Article
%A Grivaux, Sophie
%A Roginskaya, Maria
%T Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle
%J Czechoslovak Mathematical Journal
%D 2013
%P 603-627
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0043-z/
%R 10.1007/s10587-013-0043-z
%G en
%F 10_1007_s10587_013_0043_z
Grivaux, Sophie; Roginskaya, Maria. Some new examples of recurrence and non-recurrence sets for products of rotations on the unit circle. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 603-627. doi : 10.1007/s10587-013-0043-z. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0043-z/

Cité par Sources :