Keywords: Rothe method; stability; comparison
@article{10_1007_s10587_013_0042_0,
author = {Leszczy\'nski, Henryk and Zwierkowski, Piotr},
title = {The {Rothe} method for the {McKendrick-von} {Foerster} equation},
journal = {Czechoslovak Mathematical Journal},
pages = {589--602},
year = {2013},
volume = {63},
number = {3},
doi = {10.1007/s10587-013-0042-0},
mrnumber = {3125644},
zbl = {06282100},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0042-0/}
}
TY - JOUR AU - Leszczyński, Henryk AU - Zwierkowski, Piotr TI - The Rothe method for the McKendrick-von Foerster equation JO - Czechoslovak Mathematical Journal PY - 2013 SP - 589 EP - 602 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0042-0/ DO - 10.1007/s10587-013-0042-0 LA - en ID - 10_1007_s10587_013_0042_0 ER -
%0 Journal Article %A Leszczyński, Henryk %A Zwierkowski, Piotr %T The Rothe method for the McKendrick-von Foerster equation %J Czechoslovak Mathematical Journal %D 2013 %P 589-602 %V 63 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0042-0/ %R 10.1007/s10587-013-0042-0 %G en %F 10_1007_s10587_013_0042_0
Leszczyński, Henryk; Zwierkowski, Piotr. The Rothe method for the McKendrick-von Foerster equation. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 589-602. doi: 10.1007/s10587-013-0042-0
[1] Abia, L. M., López-Marcos, J. C.: On the numerical integration of non-local terms for age-structured population models. Math. Biosci. 157 (1999), 147-167. | DOI | MR
[2] Jr., J. Douglas, Milner, F. A.: Numerical methods for a model of population dynamics. Calcolo 24 (1987), 247-254. | DOI | MR | Zbl
[3] Feichtinger, G., Prskawetz, A., Veliov, V. M.: Age-structured optimal control in population economics. Theor. Popul. Biol. 65 (2004), 373-387. | DOI | Zbl
[4] Gurtin, M. E., MacCamy, R. C.: Non-linear age-dependend population dynamics. Arch. Ration. Mech. Anal. 54 (1974), 281-300. | DOI | MR
[5] Hoppensteadt, F.: Mathematical Theories of Populations: Demographics, Genetics, and Epidemics. CBMS-NSF Regional Conference Series in Applied Mathematics 20. SIAM Philadelphia (1975). | MR
[6] Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs 7. Giardini Editori e Stampatori Pisa (1994).
[7] Jossey, J., Hirani, A. N.: Equivalence theorems in numerical analysis: integration, differentiation and interpolation. (2007). | arXiv
[8] Kačur, J.: Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities. Czech. Math. J. 34 (1984), 92-106. | MR | Zbl
[9] Kikuchi, N., Kačur, J.: Convergence of Rothe's method in Hölder spaces. Appl. Math., Praha 48 (2003), 353-365. | DOI | MR | Zbl
[10] Kostova, T. V.: Numerical solutions of a hyperbolic differential-integral equation. Comput. Math. Appl. 15 (1988), 427-436. | DOI | MR | Zbl
[11] Lax, P. D., Richtmyer, R. D.: Survey of the stability of linear finite difference equations. Commun. Pure Appl. Math. 9 (1956), 267-293. | DOI | MR | Zbl
[12] Manfredi, P., Williams, J. R.: Realistic population dynamics in epidemiological models: the impact of population decline on the dynamics of childhood infectious diseases. Measles in Italy as an example. Math. Biosci. 192 (2004), 153-175. | DOI | MR | Zbl
[13] Milner, F. A.: A finite element method for a two-sex model of population dynamics. Numer. Methods Partial Differ. Equations 4 (1988), 329-345. | DOI | MR | Zbl
[14] Murray, J. D.: Mathematical Biology. Vol. 1: An introduction. 3rd ed. Interdisciplinary Applied Mathematics 17. Springer New York (2002). | MR
[15] Ostermann, A., Thalhammer, M.: Convergence of Runge-Kutta methods for nonlinear parabolic equations. Appl. Numer. Math. 42 (2002), 367-380. | DOI | MR | Zbl
[16] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications (East European Series) vol. 4 Reidel, Dordrecht (1982). | MR | Zbl
[17] Sanz-Serna, J. M., Palencia, C.: A general equivalence theorem in the theory of discretization methods. Math. Comput. 45 (1985), 143-152. | DOI | MR | Zbl
[18] Slodička, M.: Semigroup formulation of Rothe's method: application to parabolic problems. Commentat. Math. Univ. Carol. 33 (1992), 245-260. | MR | Zbl
[19] Spigler, R., Vianello, M.: Convergence analysis of the semi-implicit Euler method for abstract evolution equations. Numer. Funct. Anal. Optimization 16 (1995), 785-803. | DOI | MR | Zbl
[20] Tchuenche, J. M.: Convergence of an age-physiology dependent population model. Sci., Ser. A, Math. Sci. (N.S.) 15 (2007), 23-30. | MR | Zbl
[21] Walter, W.: Ordinary Differential Equations Transl. from the German by Russell Thompson. Graduate Texts in Mathematics. Readings in Mathematics 182. Springer New York (1998). | MR
[22] al., J. A. J. Metz et: The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics 68. Springer Berlin (1986). | MR
Cité par Sources :