The Rothe method for the McKendrick-von Foerster equation
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 589-602
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in $L^\infty $ and $L^1$ norms. Proofs of these results are based on comparison inequalities. Our theory is illustrated by numerical experiments. Our research is motivated by certain models of mathematical biology.
We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in $L^\infty $ and $L^1$ norms. Proofs of these results are based on comparison inequalities. Our theory is illustrated by numerical experiments. Our research is motivated by certain models of mathematical biology.
DOI : 10.1007/s10587-013-0042-0
Classification : 65M12, 65M99, 92B99
Keywords: Rothe method; stability; comparison
@article{10_1007_s10587_013_0042_0,
     author = {Leszczy\'nski, Henryk and Zwierkowski, Piotr},
     title = {The {Rothe} method for the {McKendrick-von} {Foerster} equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {589--602},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0042-0},
     mrnumber = {3125644},
     zbl = {06282100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0042-0/}
}
TY  - JOUR
AU  - Leszczyński, Henryk
AU  - Zwierkowski, Piotr
TI  - The Rothe method for the McKendrick-von Foerster equation
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 589
EP  - 602
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0042-0/
DO  - 10.1007/s10587-013-0042-0
LA  - en
ID  - 10_1007_s10587_013_0042_0
ER  - 
%0 Journal Article
%A Leszczyński, Henryk
%A Zwierkowski, Piotr
%T The Rothe method for the McKendrick-von Foerster equation
%J Czechoslovak Mathematical Journal
%D 2013
%P 589-602
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0042-0/
%R 10.1007/s10587-013-0042-0
%G en
%F 10_1007_s10587_013_0042_0
Leszczyński, Henryk; Zwierkowski, Piotr. The Rothe method for the McKendrick-von Foerster equation. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 589-602. doi: 10.1007/s10587-013-0042-0

[1] Abia, L. M., López-Marcos, J. C.: On the numerical integration of non-local terms for age-structured population models. Math. Biosci. 157 (1999), 147-167. | DOI | MR

[2] Jr., J. Douglas, Milner, F. A.: Numerical methods for a model of population dynamics. Calcolo 24 (1987), 247-254. | DOI | MR | Zbl

[3] Feichtinger, G., Prskawetz, A., Veliov, V. M.: Age-structured optimal control in population economics. Theor. Popul. Biol. 65 (2004), 373-387. | DOI | Zbl

[4] Gurtin, M. E., MacCamy, R. C.: Non-linear age-dependend population dynamics. Arch. Ration. Mech. Anal. 54 (1974), 281-300. | DOI | MR

[5] Hoppensteadt, F.: Mathematical Theories of Populations: Demographics, Genetics, and Epidemics. CBMS-NSF Regional Conference Series in Applied Mathematics 20. SIAM Philadelphia (1975). | MR

[6] Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics. Applied Mathematics Monographs 7. Giardini Editori e Stampatori Pisa (1994).

[7] Jossey, J., Hirani, A. N.: Equivalence theorems in numerical analysis: integration, differentiation and interpolation. (2007). | arXiv

[8] Kačur, J.: Application of Rothe's method to perturbed linear hyperbolic equations and variational inequalities. Czech. Math. J. 34 (1984), 92-106. | MR | Zbl

[9] Kikuchi, N., Kačur, J.: Convergence of Rothe's method in Hölder spaces. Appl. Math., Praha 48 (2003), 353-365. | DOI | MR | Zbl

[10] Kostova, T. V.: Numerical solutions of a hyperbolic differential-integral equation. Comput. Math. Appl. 15 (1988), 427-436. | DOI | MR | Zbl

[11] Lax, P. D., Richtmyer, R. D.: Survey of the stability of linear finite difference equations. Commun. Pure Appl. Math. 9 (1956), 267-293. | DOI | MR | Zbl

[12] Manfredi, P., Williams, J. R.: Realistic population dynamics in epidemiological models: the impact of population decline on the dynamics of childhood infectious diseases. Measles in Italy as an example. Math. Biosci. 192 (2004), 153-175. | DOI | MR | Zbl

[13] Milner, F. A.: A finite element method for a two-sex model of population dynamics. Numer. Methods Partial Differ. Equations 4 (1988), 329-345. | DOI | MR | Zbl

[14] Murray, J. D.: Mathematical Biology. Vol. 1: An introduction. 3rd ed. Interdisciplinary Applied Mathematics 17. Springer New York (2002). | MR

[15] Ostermann, A., Thalhammer, M.: Convergence of Runge-Kutta methods for nonlinear parabolic equations. Appl. Numer. Math. 42 (2002), 367-380. | DOI | MR | Zbl

[16] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications (East European Series) vol. 4 Reidel, Dordrecht (1982). | MR | Zbl

[17] Sanz-Serna, J. M., Palencia, C.: A general equivalence theorem in the theory of discretization methods. Math. Comput. 45 (1985), 143-152. | DOI | MR | Zbl

[18] Slodička, M.: Semigroup formulation of Rothe's method: application to parabolic problems. Commentat. Math. Univ. Carol. 33 (1992), 245-260. | MR | Zbl

[19] Spigler, R., Vianello, M.: Convergence analysis of the semi-implicit Euler method for abstract evolution equations. Numer. Funct. Anal. Optimization 16 (1995), 785-803. | DOI | MR | Zbl

[20] Tchuenche, J. M.: Convergence of an age-physiology dependent population model. Sci., Ser. A, Math. Sci. (N.S.) 15 (2007), 23-30. | MR | Zbl

[21] Walter, W.: Ordinary Differential Equations Transl. from the German by Russell Thompson. Graduate Texts in Mathematics. Readings in Mathematics 182. Springer New York (1998). | MR

[22] al., J. A. J. Metz et: The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics 68. Springer Berlin (1986). | MR

Cité par Sources :