Keywords: higher derivation; field extension; closed polynomial
@article{10_1007_s10587_013_0041_1,
author = {Li, Jiantao and Du, Xiankun},
title = {A note on the kernels of higher derivations},
journal = {Czechoslovak Mathematical Journal},
pages = {583--588},
year = {2013},
volume = {63},
number = {3},
doi = {10.1007/s10587-013-0041-1},
mrnumber = {3125643},
zbl = {06282099},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0041-1/}
}
TY - JOUR AU - Li, Jiantao AU - Du, Xiankun TI - A note on the kernels of higher derivations JO - Czechoslovak Mathematical Journal PY - 2013 SP - 583 EP - 588 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0041-1/ DO - 10.1007/s10587-013-0041-1 LA - en ID - 10_1007_s10587_013_0041_1 ER -
Li, Jiantao; Du, Xiankun. A note on the kernels of higher derivations. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 583-588. doi: 10.1007/s10587-013-0041-1
[1] Arzhantsev, I. V., Petravchuk, A. P.: Closed polynomials and saturated subalgebras of polynomial algebras. Ukr. Math. J. 59 (2007), 1783-1790. | DOI | MR | Zbl
[2] Kojima, H., Wada, N.: Kernels of higher derivations in $R[x,y]$. Commun. Algebra 39 (2011), 1577-1582. | DOI | MR | Zbl
[3] Mirzavaziri, M.: Characterization of higher derivations on algebras. Commun. Algebra 38 (2010), 981-987. | DOI | MR | Zbl
[4] Miyanishi, M.: Lectures on Curves on Rational and Unirational Surfaces. Tata Institute of Fundamental Research Lectures on Mathematics and Physics Berlin, Springer (1978). | MR | Zbl
[5] Nowicki, A.: Polynomial Derivations and their Rings of Constants. N. Copernicus Univ. Press Toruń (1994). | MR | Zbl
[6] Roman, S.: Advanced Linear Algebra. 3rd edition, Graduate Texts in Mathematics 135 New York, Springer (2008). | MR | Zbl
[7] Tanimoto, R.: An algorithm for computing the kernel of a locally finite iterative higher derivation. J. Pure Appl. Algebra 212 (2008), 2284-2297. | DOI | MR | Zbl
[8] Wada, N.: Some results on the kernels of higher derivations on $k[x,y]$ and $k(x,y)$. Colloq. Math. 122 (2011), 185-189. | DOI | MR | Zbl
Cité par Sources :