A note on the kernels of higher derivations
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 583-588
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $k\subseteq k'$ be a field extension. We give relations between the kernels of higher derivations on $k[X]$ and $k'[X]$, where $k[X]:=k[x_1,\dots ,x_n]$ denotes the polynomial ring in $n$ variables over the field $k$. More precisely, let $D=\{D_n\}_{n=0}^\infty $ a higher $k$-derivation on $k[X]$ and $D'=\{D_n'\}_{n=0}^\infty $ a higher $k'$-derivation on $k'[X]$ such that $D'_m(x_i)=D_m(x_i)$ for all $m\geq 0$ and $i=1,2,\dots ,n$. Then (1) $k[X]^D=k$ if and only if $k'[X]^{D'}=k'$; (2) $k[X]^D$ is a finitely generated $k$-algebra if and only if $k'[X]^{D'}$ is a finitely generated $k'$-algebra. Furthermore, we also show that the kernel $k[X]^D$ of a higher derivation $D$ of $k[X]$ can be generated by a set of closed polynomials.
Let $k\subseteq k'$ be a field extension. We give relations between the kernels of higher derivations on $k[X]$ and $k'[X]$, where $k[X]:=k[x_1,\dots ,x_n]$ denotes the polynomial ring in $n$ variables over the field $k$. More precisely, let $D=\{D_n\}_{n=0}^\infty $ a higher $k$-derivation on $k[X]$ and $D'=\{D_n'\}_{n=0}^\infty $ a higher $k'$-derivation on $k'[X]$ such that $D'_m(x_i)=D_m(x_i)$ for all $m\geq 0$ and $i=1,2,\dots ,n$. Then (1) $k[X]^D=k$ if and only if $k'[X]^{D'}=k'$; (2) $k[X]^D$ is a finitely generated $k$-algebra if and only if $k'[X]^{D'}$ is a finitely generated $k'$-algebra. Furthermore, we also show that the kernel $k[X]^D$ of a higher derivation $D$ of $k[X]$ can be generated by a set of closed polynomials.
DOI : 10.1007/s10587-013-0041-1
Classification : 13A50
Keywords: higher derivation; field extension; closed polynomial
@article{10_1007_s10587_013_0041_1,
     author = {Li, Jiantao and Du, Xiankun},
     title = {A note on the kernels of higher derivations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {583--588},
     year = {2013},
     volume = {63},
     number = {3},
     doi = {10.1007/s10587-013-0041-1},
     mrnumber = {3125643},
     zbl = {06282099},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0041-1/}
}
TY  - JOUR
AU  - Li, Jiantao
AU  - Du, Xiankun
TI  - A note on the kernels of higher derivations
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 583
EP  - 588
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0041-1/
DO  - 10.1007/s10587-013-0041-1
LA  - en
ID  - 10_1007_s10587_013_0041_1
ER  - 
%0 Journal Article
%A Li, Jiantao
%A Du, Xiankun
%T A note on the kernels of higher derivations
%J Czechoslovak Mathematical Journal
%D 2013
%P 583-588
%V 63
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0041-1/
%R 10.1007/s10587-013-0041-1
%G en
%F 10_1007_s10587_013_0041_1
Li, Jiantao; Du, Xiankun. A note on the kernels of higher derivations. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 583-588. doi: 10.1007/s10587-013-0041-1

[1] Arzhantsev, I. V., Petravchuk, A. P.: Closed polynomials and saturated subalgebras of polynomial algebras. Ukr. Math. J. 59 (2007), 1783-1790. | DOI | MR | Zbl

[2] Kojima, H., Wada, N.: Kernels of higher derivations in $R[x,y]$. Commun. Algebra 39 (2011), 1577-1582. | DOI | MR | Zbl

[3] Mirzavaziri, M.: Characterization of higher derivations on algebras. Commun. Algebra 38 (2010), 981-987. | DOI | MR | Zbl

[4] Miyanishi, M.: Lectures on Curves on Rational and Unirational Surfaces. Tata Institute of Fundamental Research Lectures on Mathematics and Physics Berlin, Springer (1978). | MR | Zbl

[5] Nowicki, A.: Polynomial Derivations and their Rings of Constants. N. Copernicus Univ. Press Toruń (1994). | MR | Zbl

[6] Roman, S.: Advanced Linear Algebra. 3rd edition, Graduate Texts in Mathematics 135 New York, Springer (2008). | MR | Zbl

[7] Tanimoto, R.: An algorithm for computing the kernel of a locally finite iterative higher derivation. J. Pure Appl. Algebra 212 (2008), 2284-2297. | DOI | MR | Zbl

[8] Wada, N.: Some results on the kernels of higher derivations on $k[x,y]$ and $k(x,y)$. Colloq. Math. 122 (2011), 185-189. | DOI | MR | Zbl

Cité par Sources :