A note on the kernels of higher derivations
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 583-588
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $k\subseteq k'$ be a field extension. We give relations between the kernels of higher derivations on $k[X]$ and $k'[X]$, where $k[X]:=k[x_1,\dots ,x_n]$ denotes the polynomial ring in $n$ variables over the field $k$. More precisely, let $D=\{D_n\}_{n=0}^\infty $ a higher $k$-derivation on $k[X]$ and $D'=\{D_n'\}_{n=0}^\infty $ a higher $k'$-derivation on $k'[X]$ such that $D'_m(x_i)=D_m(x_i)$ for all $m\geq 0$ and $i=1,2,\dots ,n$. Then (1) $k[X]^D=k$ if and only if $k'[X]^{D'}=k'$; (2) $k[X]^D$ is a finitely generated $k$-algebra if and only if $k'[X]^{D'}$ is a finitely generated $k'$-algebra. Furthermore, we also show that the kernel $k[X]^D$ of a higher derivation $D$ of $k[X]$ can be generated by a set of closed polynomials.
DOI :
10.1007/s10587-013-0041-1
Classification :
13A50
Keywords: higher derivation; field extension; closed polynomial
Keywords: higher derivation; field extension; closed polynomial
@article{10_1007_s10587_013_0041_1,
author = {Li, Jiantao and Du, Xiankun},
title = {A note on the kernels of higher derivations},
journal = {Czechoslovak Mathematical Journal},
pages = {583--588},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2013},
doi = {10.1007/s10587-013-0041-1},
mrnumber = {3125643},
zbl = {06282099},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0041-1/}
}
TY - JOUR AU - Li, Jiantao AU - Du, Xiankun TI - A note on the kernels of higher derivations JO - Czechoslovak Mathematical Journal PY - 2013 SP - 583 EP - 588 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0041-1/ DO - 10.1007/s10587-013-0041-1 LA - en ID - 10_1007_s10587_013_0041_1 ER -
%0 Journal Article %A Li, Jiantao %A Du, Xiankun %T A note on the kernels of higher derivations %J Czechoslovak Mathematical Journal %D 2013 %P 583-588 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0041-1/ %R 10.1007/s10587-013-0041-1 %G en %F 10_1007_s10587_013_0041_1
Li, Jiantao; Du, Xiankun. A note on the kernels of higher derivations. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 583-588. doi: 10.1007/s10587-013-0041-1
Cité par Sources :