Another proof of a result of Jech and Shelah
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 577-582.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Shelah's pcf theory describes a certain structure which must exist if $\aleph _{\omega }$ is strong limit and $2^{\aleph _\omega }>\aleph _{\omega _1}$ holds. Jech and Shelah proved the surprising result that this structure exists in ZFC. They first give a forcing extension in which the structure exists then argue that by some absoluteness results it must exist anyway. We reformulate the statement to the existence of a certain partially ordered set, and then we show by a straightforward, elementary (i.e., non-metamathematical) argument that such partially ordered sets exist.
DOI : 10.1007/s10587-013-0040-2
Classification : 03E05
Keywords: partially ordered set; pcf theory
@article{10_1007_s10587_013_0040_2,
     author = {Komj\'ath, P\'eter},
     title = {Another proof of a result of {Jech} and {Shelah}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {577--582},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2013},
     doi = {10.1007/s10587-013-0040-2},
     mrnumber = {3125642},
     zbl = {06282098},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0040-2/}
}
TY  - JOUR
AU  - Komjáth, Péter
TI  - Another proof of a result of Jech and Shelah
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 577
EP  - 582
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0040-2/
DO  - 10.1007/s10587-013-0040-2
LA  - en
ID  - 10_1007_s10587_013_0040_2
ER  - 
%0 Journal Article
%A Komjáth, Péter
%T Another proof of a result of Jech and Shelah
%J Czechoslovak Mathematical Journal
%D 2013
%P 577-582
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0040-2/
%R 10.1007/s10587-013-0040-2
%G en
%F 10_1007_s10587_013_0040_2
Komjáth, Péter. Another proof of a result of Jech and Shelah. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 577-582. doi : 10.1007/s10587-013-0040-2. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0040-2/

Cité par Sources :