Another proof of a result of Jech and Shelah
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 577-582
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Shelah's pcf theory describes a certain structure which must exist if $\aleph _{\omega }$ is strong limit and $2^{\aleph _\omega }>\aleph _{\omega _1}$ holds. Jech and Shelah proved the surprising result that this structure exists in ZFC. They first give a forcing extension in which the structure exists then argue that by some absoluteness results it must exist anyway. We reformulate the statement to the existence of a certain partially ordered set, and then we show by a straightforward, elementary (i.e., non-metamathematical) argument that such partially ordered sets exist.
@article{10_1007_s10587_013_0040_2,
author = {Komj\'ath, P\'eter},
title = {Another proof of a result of {Jech} and {Shelah}},
journal = {Czechoslovak Mathematical Journal},
pages = {577--582},
publisher = {mathdoc},
volume = {63},
number = {3},
year = {2013},
doi = {10.1007/s10587-013-0040-2},
mrnumber = {3125642},
zbl = {06282098},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0040-2/}
}
TY - JOUR AU - Komjáth, Péter TI - Another proof of a result of Jech and Shelah JO - Czechoslovak Mathematical Journal PY - 2013 SP - 577 EP - 582 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0040-2/ DO - 10.1007/s10587-013-0040-2 LA - en ID - 10_1007_s10587_013_0040_2 ER -
Komjáth, Péter. Another proof of a result of Jech and Shelah. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 3, pp. 577-582. doi: 10.1007/s10587-013-0040-2
Cité par Sources :