Uppers to zero in $R[x]$ and almost principal ideals
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 565-572.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be an integral domain with quotient field $K$ and $f(x)$ a polynomial of positive degree in $K[x]$. In this paper we develop a method for studying almost principal uppers to zero ideals. More precisely, we prove that uppers to zero divisorial ideals of the form $I = f(x)K[x] \cap R[x]$ are almost principal in the following two cases: – $J$, the ideal generated by the leading coefficients of $I$, satisfies $J^{-1} = R$. – $I^{-1}$ as the $R[x]$-submodule of $K(x)$ is of finite type. Furthermore we prove that for $I = f(x)K[x] \cap R[x]$ we have: – $I^{-1}\cap K[x]=(I:_{K(x)}I)$. – If there exists $p/q \in I^{-1}-K[x]$, then $(q,f)\neq 1$ in $K[x]$. If in addition $q$ is irreducible and $I$ is almost principal, then $I' = q(x)K[x] \cap R[x]$ is an almost principal upper to zero. Finally we show that a Schreier domain $R$ is a greatest common divisor domain if and only if every upper to zero in $R[x]$ contains a primitive polynomial.
DOI : 10.1007/s10587-013-0038-9
Classification : 13A05, 13A15, 13B25, 13F15
Keywords: almost principal ideal; divisorial ideal; greatest common divisor domain; Schreier domain; uppers to zero
@article{10_1007_s10587_013_0038_9,
     author = {Borna, Keivan and Mohajer-Naser, Abolfazl},
     title = {Uppers to zero in $R[x]$ and almost principal ideals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {565--572},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2013},
     doi = {10.1007/s10587-013-0038-9},
     mrnumber = {3073979},
     zbl = {06236432},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0038-9/}
}
TY  - JOUR
AU  - Borna, Keivan
AU  - Mohajer-Naser, Abolfazl
TI  - Uppers to zero in $R[x]$ and almost principal ideals
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 565
EP  - 572
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0038-9/
DO  - 10.1007/s10587-013-0038-9
LA  - en
ID  - 10_1007_s10587_013_0038_9
ER  - 
%0 Journal Article
%A Borna, Keivan
%A Mohajer-Naser, Abolfazl
%T Uppers to zero in $R[x]$ and almost principal ideals
%J Czechoslovak Mathematical Journal
%D 2013
%P 565-572
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0038-9/
%R 10.1007/s10587-013-0038-9
%G en
%F 10_1007_s10587_013_0038_9
Borna, Keivan; Mohajer-Naser, Abolfazl. Uppers to zero in $R[x]$ and almost principal ideals. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 565-572. doi : 10.1007/s10587-013-0038-9. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0038-9/

Cité par Sources :