Keywords: $k$-convex function; $k$-Hessian operator; $k$-Hessian measure; $k$-Green function
@article{10_1007_s10587_013_0037_x,
author = {Wan, Dongrui},
title = {Estimates for $k${-Hessian} operator and some applications},
journal = {Czechoslovak Mathematical Journal},
pages = {547--564},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0037-x},
mrnumber = {3073978},
zbl = {06236431},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0037-x/}
}
TY - JOUR AU - Wan, Dongrui TI - Estimates for $k$-Hessian operator and some applications JO - Czechoslovak Mathematical Journal PY - 2013 SP - 547 EP - 564 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0037-x/ DO - 10.1007/s10587-013-0037-x LA - en ID - 10_1007_s10587_013_0037_x ER -
Wan, Dongrui. Estimates for $k$-Hessian operator and some applications. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 547-564. doi: 10.1007/s10587-013-0037-x
[1] Błocki, Z.: Estimates for the complex Monge-Ampère operator. Bull. Pol. Acad. Sci., Math. 41 (1993), 151-157. | MR | Zbl
[2] Carlehed, M., Cegrell, U., Wikström, F.: Jensen measures, hyperconvexity and boundary behaviour of the pluricomplex Green function. Ann. Pol. Math. 71 (1999), 87-103. | DOI | MR | Zbl
[3] Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier 54 (2004), 159-179. | DOI | MR | Zbl
[4] Cegrell, U., Persson, L.: An energy estimate for the complex Monge-Ampère operator. Ann. Pol. Math. 67 (1997), 95-102. | DOI | MR | Zbl
[5] Czyż, R.: Convergence in capacity of the pluricomplex Green function. Zesz. Nauk. Uniw. Jagiell., Univ. Iagell. 1285, Acta Math. 43 (2005), 41-44. | MR | Zbl
[6] Demailly, J. P.: Monge-Ampère operators, Lelong numbers and intersection theory. Complex Analysis and Geometry Ancona, Vincenzo The University Series in Mathematics, Plenum Press, New York 115-193 (1993). | MR | Zbl
[7] Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8 (1959), 957-965. | MR | Zbl
[8] Labutin, D. A.: Potential estimates for a class of fully nonlinear elliptic equations. Duke Math. J. 111 (2002), 1-49. | DOI | MR | Zbl
[9] Trudinger, N. S., Wang, X. J.: Hessian measures. II. Ann. Math. (2) 150 (1999), 579-604. | MR | Zbl
[10] Trudinger, N. S., Wang, X. J.: Hessian measures. III. J. Funct. Anal. 193 (2002), 1-23. | DOI | MR | Zbl
[11] Walsh, J. B.: Continuity of envelopes of plurisubharmonic functions. J. Math. Mech. 18 (1968), 143-148. | MR | Zbl
[12] Wan, D., Wang, W.: Lelong-Jensen type formula, $k$-Hessian boundary measure and Lelong number for $k$-convex functions. J. Math. Pures Appl. 99 (2013), 635-654. | DOI | MR
[13] Wikström, F.: Jensen measures and boundary values of plurisubharmonic functions. Ark. Mat. 39 (2001), 181-200. | DOI | MR | Zbl
Cité par Sources :