Keywords: interconnection network; graph; leaf number; traceability; Hamiltonicity; Graffiti.pc
@article{10_1007_s10587_013_0036_y,
author = {Mukwembi, Simon},
title = {Minimum degree, leaf number and traceability},
journal = {Czechoslovak Mathematical Journal},
pages = {539--545},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0036-y},
mrnumber = {3073977},
zbl = {06236430},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0036-y/}
}
TY - JOUR AU - Mukwembi, Simon TI - Minimum degree, leaf number and traceability JO - Czechoslovak Mathematical Journal PY - 2013 SP - 539 EP - 545 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0036-y/ DO - 10.1007/s10587-013-0036-y LA - en ID - 10_1007_s10587_013_0036_y ER -
Mukwembi, Simon. Minimum degree, leaf number and traceability. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 539-545. doi: 10.1007/s10587-013-0036-y
[1] Čada, R., Flandrin, E., Kang, H.: A note on degree conditions for traceability in locally claw-free graphs. Math. Comput. Sci. 5 (2011), 21-25. | DOI | MR | Zbl
[2] DeLaViña, E.: Written on the Wall II (Conjectures of Graffiti.pc). http://cms.dt.uh.edu/faculty/delavinae/research/wowII/
[3] DeLaViña, E., Waller, B.: Spanning trees with many leaves and average distance. Electron. J. Comb. 15 (2008), 16 p. | MR | Zbl
[4] Ding, G., Johnson, T., Seymour, P.: Spanning trees with many leaves. J. Graph Theory 37 (2001), 189-197. | DOI | MR | Zbl
[5] Duffus, D., Jacobson, M. S., Gould, R. J.: Forbidden subgraphs and the Hamiltonian theme. The Theory and Applications of Graphs 4th int. Conf., Kalamazoo/Mich. 1980 Wiley, New York 297-316 (1981). | MR | Zbl
[6] Fernandes, L. M., Gouveia, L.: Minimal spanning trees with a constraint on the number of leaves. Eur. J. Oper. Res. 104 (1998), 250-261. | DOI | Zbl
[7] Goodman, S., Hedetniemi, S.: Sufficient conditions for a graph to be Hamiltonian. J. Comb. Theory, Ser. B 16 (1974), 175-180. | DOI | MR | Zbl
[8] Gould, R. J., Jacobson, M. S.: Forbidden subgraphs and Hamiltonian properties and graphs. Discrete Math. 42 (1982), 189-196. | DOI | MR | Zbl
[9] Griggs, J. R., Wu, M.: Spanning trees in graphs of minimum degree 4 or 5. Discrete Math. 104 (1992), 167-183. | MR | Zbl
[10] Kleitman, D. J., West, D. B.: Spanning trees with many leaves. SIAM J. Discrete Math. 4 (1991), 99-106. | DOI | MR | Zbl
[11] Li, H.: Hamiltonian cycles in 2-connected claw-free-graphs. J. Graph Theory 20 447-457 (1995). | DOI | MR | Zbl
[12] Mukwembi, S., Munyira, S.: Radius, diameter and the leaf number. Quaest. Math. (Submitted).
[13] Ren, S.: A sufficient condition for graphs with large neighborhood unions to be traceable. Discrete Math. 161 (1996), 229-234. | DOI | MR | Zbl
[14] Storer, J. A.: Constructing full spanning trees for cubic graphs. Inf. Process Lett. 13 (1981), 8-11. | DOI | MR | Zbl
Cité par Sources :