Keywords: Morse form foliation; compact leaf; cohomology class
@article{10_1007_s10587_013_0034_0,
author = {Gelbukh, Irina},
title = {Close cohomologous {Morse} forms with compact leaves},
journal = {Czechoslovak Mathematical Journal},
pages = {515--528},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0034-0},
mrnumber = {3073975},
zbl = {06236428},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0034-0/}
}
TY - JOUR AU - Gelbukh, Irina TI - Close cohomologous Morse forms with compact leaves JO - Czechoslovak Mathematical Journal PY - 2013 SP - 515 EP - 528 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0034-0/ DO - 10.1007/s10587-013-0034-0 LA - en ID - 10_1007_s10587_013_0034_0 ER -
Gelbukh, Irina. Close cohomologous Morse forms with compact leaves. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 515-528. doi: 10.1007/s10587-013-0034-0
[1] Arnoux, P., Levitt, G.: Sur l'unique ergodicité des 1-formes fermées singulières (Unique ergodicity of closed singular 1-forms). Invent. Math. 84 (1986), 141-156 French. | DOI | MR | Zbl
[2] Farber, M.: Topology of Closed One-Forms. Mathematical Surveys and Monographs 108. AMS, Providence, RI (2004). | MR | Zbl
[3] Farber, M., Katz, G., Levine, J.: Morse theory of harmonic forms. Topology 37 (1998), 469-483. | DOI | MR | Zbl
[4] Gelbukh, I.: Presence of minimal components in a Morse form foliation. Differ. Geom. Appl. 22 (2005), 189-198. | DOI | MR | Zbl
[5] Gelbukh, I.: Ranks of collinear Morse forms. J. Geom. Phys. 61 (2011), 425-435. | DOI | MR | Zbl
[6] Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. 2nd corr. printing. Graduate Texts in Mathematics, 14. Springer, New York (1980). | MR | Zbl
[7] Hirsch, M. W.: Smooth regular neighborhoods. Ann. Math. (2) 76 (1962), 524-530. | DOI | MR | Zbl
[8] Hirsch, M. W.: Differential Topology. Graduate Texts in Mathematics, 33. Springer, New York (1976). | MR | Zbl
[9] Levitt, G.: 1-formes fermées singulières et groupe fondamental. Invent. Math. 88 (1987), 635-667 French. | DOI | MR | Zbl
[10] Levitt, G.: Groupe fondamental de l'espace des feuilles dans les feuilletages sans holonomie (Fundamental group of the leaf space of foliations without holonomy). French J. Differ. Geom. 31 (1990), 711-761. | DOI | MR | Zbl
[11] Pedersen, E. K.: Regular neighborhoods in topological manifolds. Mich. Math. J. 24 (1977), 177-183. | DOI | MR | Zbl
Cité par Sources :