The efficiency of approximating real numbers by Lüroth expansion
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 497-513
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For any $x\in (0,1]$, let $$ x=\frac {1}{d_1}+\frac {1}{d_1(d_1-1)d_2}+\dots +\frac {1}{d_1(d_1-1) \dots d_{n-1}(d_{n-1}-1)d_{n}}+\dots $$ be its Lüroth expansion. Denote by ${P_n(x)}/{Q_n(x)}$ the partial sum of the first $n$ terms in the above series and call it the $n$th convergent of $x$ in the Lüroth expansion. This paper is concerned with the efficiency of approximating real numbers by their convergents $\{{P_n(x)}/{Q_n(x)}\}_{n\ge 1}$ in the Lüroth expansion. It is shown that almost no points can have convergents as the optimal approximation for infinitely many times in the Lüroth expansion. Consequently, Hausdorff dimension is introduced to quantify the set of real numbers which can be well approximated by their convergents in the Lüroth expansion, namely the following Jarník-like set: $\{x\in (0,1]\colon |x-{P_n(x)}/{Q_n(x)}|{1}/{Q_n(x)^{\nu +1}} \text{infinitely often}\}$ for any $\nu \ge 1$.
For any $x\in (0,1]$, let $$ x=\frac {1}{d_1}+\frac {1}{d_1(d_1-1)d_2}+\dots +\frac {1}{d_1(d_1-1) \dots d_{n-1}(d_{n-1}-1)d_{n}}+\dots $$ be its Lüroth expansion. Denote by ${P_n(x)}/{Q_n(x)}$ the partial sum of the first $n$ terms in the above series and call it the $n$th convergent of $x$ in the Lüroth expansion. This paper is concerned with the efficiency of approximating real numbers by their convergents $\{{P_n(x)}/{Q_n(x)}\}_{n\ge 1}$ in the Lüroth expansion. It is shown that almost no points can have convergents as the optimal approximation for infinitely many times in the Lüroth expansion. Consequently, Hausdorff dimension is introduced to quantify the set of real numbers which can be well approximated by their convergents in the Lüroth expansion, namely the following Jarník-like set: $\{x\in (0,1]\colon |x-{P_n(x)}/{Q_n(x)}|{1}/{Q_n(x)^{\nu +1}} \text{infinitely often}\}$ for any $\nu \ge 1$.
DOI : 10.1007/s10587-013-0033-1
Classification : 11K55, 28A80
Keywords: Lüroth expansion; optimal approximation; Hausdorff dimension
@article{10_1007_s10587_013_0033_1,
     author = {Cao, Chunyun and Wu, Jun and Zhang, Zhenliang},
     title = {The efficiency of approximating real numbers by {L\"uroth} expansion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {497--513},
     year = {2013},
     volume = {63},
     number = {2},
     doi = {10.1007/s10587-013-0033-1},
     mrnumber = {3073974},
     zbl = {06236427},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0033-1/}
}
TY  - JOUR
AU  - Cao, Chunyun
AU  - Wu, Jun
AU  - Zhang, Zhenliang
TI  - The efficiency of approximating real numbers by Lüroth expansion
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 497
EP  - 513
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0033-1/
DO  - 10.1007/s10587-013-0033-1
LA  - en
ID  - 10_1007_s10587_013_0033_1
ER  - 
%0 Journal Article
%A Cao, Chunyun
%A Wu, Jun
%A Zhang, Zhenliang
%T The efficiency of approximating real numbers by Lüroth expansion
%J Czechoslovak Mathematical Journal
%D 2013
%P 497-513
%V 63
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0033-1/
%R 10.1007/s10587-013-0033-1
%G en
%F 10_1007_s10587_013_0033_1
Cao, Chunyun; Wu, Jun; Zhang, Zhenliang. The efficiency of approximating real numbers by Lüroth expansion. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 497-513. doi: 10.1007/s10587-013-0033-1

[1] Barreira, L., Iommi, G.: Frequency of digits in the Lüroth expansion. J. Number Theory 129 (2009), 1479-1490. | DOI | MR | Zbl

[2] Barrionuevo, J., Burton, R. M., Dajani, K., Kraaikamp, C.: Ergodic properties of generalized Lüroth series. Acta Arith. 74 (1996), 311-327. | DOI | MR | Zbl

[3] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. The Carus Mathematical Monographs 29. The Mathematical Association of America Washington DC (2002). | MR

[4] Dajani, K., Kraaikamp, C.: On approximation by Lüroth series. J. Théor. Nombres Bordx. 8 (1996), 331-346. | DOI | MR | Zbl

[5] Falconer, K.: Techniques in Fractal Geometry. John Wiley & Sons Chichester (1997). | MR | Zbl

[6] Fan, A., Liao, L., Ma, J., Wang, B.: Dimension of Besicovitch-Eggleston sets in countable symbolic space. Nonlinearity 23 (2010), 1185-1197. | DOI | MR

[7] Galambos, J.: Representations of Real Numbers by Infnite Series. Lecture Notes in Mathematics 502. Springer Berlin (1976). | MR

[8] Jager, H., Vroedt, C. de: Lüroth series and their ergodic properties. Nederl. Akad. Wet., Proc., Ser. A 72 (1969), 31-42. | MR | Zbl

[9] Kesseböhmer, M., Munday, S., Stratmann, B. O.: Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey and $\alpha$-Lüroth systems. Ergodic Theory Dyn. Syst. 32 (2012), 989-1017. | MR | Zbl

[10] Khintchine, A. Y.: Continued Fractions. Translated by Peter Wynn. P. Noordhoff Groningen (1963). | MR | Zbl

[11] Lüroth, J.: On a single valued development of numbers in an infinite series. Klein Ann. 21 (1882), 411-424 German.

[12] Šalát, T.: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czech. Math. J. 18 (1968), 489-522 German. | MR

[13] Shen, L., Fang, K.: The fractional dimensional theory in Lüroth expansion. Czech. Math. J. 61 (2011), 795-807. | DOI | MR | Zbl

[14] Shen, L., Wu, J.: On the error-sum function of Lüroth series. J. Math. Anal. Appl. 329 (2007), 1440-1445. | DOI | MR | Zbl

[15] Wang, B., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions. Adv. Math. 218 (2008), 1319-1339. | DOI | MR

[16] Wang, S., Xu, J.: On the Lebesgue measure of sum-level sets for Lüroth expansion. J. Math. Anal. Appl. 374 (2011), 197-200. | DOI | MR | Zbl

Cité par Sources :