Keywords: Lüroth expansion; optimal approximation; Hausdorff dimension
@article{10_1007_s10587_013_0033_1,
author = {Cao, Chunyun and Wu, Jun and Zhang, Zhenliang},
title = {The efficiency of approximating real numbers by {L\"uroth} expansion},
journal = {Czechoslovak Mathematical Journal},
pages = {497--513},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0033-1},
mrnumber = {3073974},
zbl = {06236427},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0033-1/}
}
TY - JOUR AU - Cao, Chunyun AU - Wu, Jun AU - Zhang, Zhenliang TI - The efficiency of approximating real numbers by Lüroth expansion JO - Czechoslovak Mathematical Journal PY - 2013 SP - 497 EP - 513 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0033-1/ DO - 10.1007/s10587-013-0033-1 LA - en ID - 10_1007_s10587_013_0033_1 ER -
%0 Journal Article %A Cao, Chunyun %A Wu, Jun %A Zhang, Zhenliang %T The efficiency of approximating real numbers by Lüroth expansion %J Czechoslovak Mathematical Journal %D 2013 %P 497-513 %V 63 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0033-1/ %R 10.1007/s10587-013-0033-1 %G en %F 10_1007_s10587_013_0033_1
Cao, Chunyun; Wu, Jun; Zhang, Zhenliang. The efficiency of approximating real numbers by Lüroth expansion. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 497-513. doi: 10.1007/s10587-013-0033-1
[1] Barreira, L., Iommi, G.: Frequency of digits in the Lüroth expansion. J. Number Theory 129 (2009), 1479-1490. | DOI | MR | Zbl
[2] Barrionuevo, J., Burton, R. M., Dajani, K., Kraaikamp, C.: Ergodic properties of generalized Lüroth series. Acta Arith. 74 (1996), 311-327. | DOI | MR | Zbl
[3] Dajani, K., Kraaikamp, C.: Ergodic Theory of Numbers. The Carus Mathematical Monographs 29. The Mathematical Association of America Washington DC (2002). | MR
[4] Dajani, K., Kraaikamp, C.: On approximation by Lüroth series. J. Théor. Nombres Bordx. 8 (1996), 331-346. | DOI | MR | Zbl
[5] Falconer, K.: Techniques in Fractal Geometry. John Wiley & Sons Chichester (1997). | MR | Zbl
[6] Fan, A., Liao, L., Ma, J., Wang, B.: Dimension of Besicovitch-Eggleston sets in countable symbolic space. Nonlinearity 23 (2010), 1185-1197. | DOI | MR
[7] Galambos, J.: Representations of Real Numbers by Infnite Series. Lecture Notes in Mathematics 502. Springer Berlin (1976). | MR
[8] Jager, H., Vroedt, C. de: Lüroth series and their ergodic properties. Nederl. Akad. Wet., Proc., Ser. A 72 (1969), 31-42. | MR | Zbl
[9] Kesseböhmer, M., Munday, S., Stratmann, B. O.: Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey and $\alpha$-Lüroth systems. Ergodic Theory Dyn. Syst. 32 (2012), 989-1017. | MR | Zbl
[10] Khintchine, A. Y.: Continued Fractions. Translated by Peter Wynn. P. Noordhoff Groningen (1963). | MR | Zbl
[11] Lüroth, J.: On a single valued development of numbers in an infinite series. Klein Ann. 21 (1882), 411-424 German.
[12] Šalát, T.: Zur metrischen Theorie der Lürothschen Entwicklungen der reellen Zahlen. Czech. Math. J. 18 (1968), 489-522 German. | MR
[13] Shen, L., Fang, K.: The fractional dimensional theory in Lüroth expansion. Czech. Math. J. 61 (2011), 795-807. | DOI | MR | Zbl
[14] Shen, L., Wu, J.: On the error-sum function of Lüroth series. J. Math. Anal. Appl. 329 (2007), 1440-1445. | DOI | MR | Zbl
[15] Wang, B., Wu, J.: Hausdorff dimension of certain sets arising in continued fraction expansions. Adv. Math. 218 (2008), 1319-1339. | DOI | MR
[16] Wang, S., Xu, J.: On the Lebesgue measure of sum-level sets for Lüroth expansion. J. Math. Anal. Appl. 374 (2011), 197-200. | DOI | MR | Zbl
Cité par Sources :