Estimates in the Hardy-Sobolev space of the annulus and stability result
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 481-495
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^{k,\infty }$; $k \in {\mathbb {N}}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty }$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.
The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^{k,\infty }$; $k \in {\mathbb {N}}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty }$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.
DOI : 10.1007/s10587-013-0032-2
Classification : 30C40, 30H10, 35R30
Keywords: annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter
@article{10_1007_s10587_013_0032_2,
     author = {Feki, Imed},
     title = {Estimates in the {Hardy-Sobolev} space of the annulus and stability result},
     journal = {Czechoslovak Mathematical Journal},
     pages = {481--495},
     year = {2013},
     volume = {63},
     number = {2},
     doi = {10.1007/s10587-013-0032-2},
     mrnumber = {3073973},
     zbl = {06236426},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0032-2/}
}
TY  - JOUR
AU  - Feki, Imed
TI  - Estimates in the Hardy-Sobolev space of the annulus and stability result
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 481
EP  - 495
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0032-2/
DO  - 10.1007/s10587-013-0032-2
LA  - en
ID  - 10_1007_s10587_013_0032_2
ER  - 
%0 Journal Article
%A Feki, Imed
%T Estimates in the Hardy-Sobolev space of the annulus and stability result
%J Czechoslovak Mathematical Journal
%D 2013
%P 481-495
%V 63
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0032-2/
%R 10.1007/s10587-013-0032-2
%G en
%F 10_1007_s10587_013_0032_2
Feki, Imed. Estimates in the Hardy-Sobolev space of the annulus and stability result. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 481-495. doi: 10.1007/s10587-013-0032-2

[1] Alessandrini, G., Piere, L. Del, Rondi, L.: Stable determination of corrosion by a single electrostatic boundary measurement. Inverse Probl. 19 (2003), 973-984. | MR

[2] Baratchard, L., Zerner, M.: On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk. J. Comput. Appl. Math. 46 (1993), 255-269. | DOI | MR | Zbl

[3] Baratchart, L., Leblond, J., Partington, J. R.: Hardy approximation to $L^\infty$ functions on subsets of the circle. Constructive Approximation 12 (1996), 423-435. | MR

[4] Brézis, H.: Analyse fonctionnelle. Théorie et applications. Masson Paris (1983), French. | MR

[5] Chaabane, S., Feki, I.: Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty}$. C. R., Math., Acad. Sci. Paris 347 (2009), 1001-1006. | DOI | MR

[6] Chaabane, S., Jaoua, M.: Identification of Robin coefficients by the means of boundary measurements. Inverse Probl. 15 (1999), 1425-1438. | MR | Zbl

[7] Chaabane, S., Fellah, I., Jaoua, M., Leblond, J.: Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems. Inverse Probl. 20 (2004), 47-59. | MR | Zbl

[8] Chaabane, S., Jaoua, M., Leblond, J.: Parameter identification for Laplace equation and approximation in Hardy classes. J. Inverse Ill-Posed Probl. 11 (2003), 33-57. | DOI | MR | Zbl

[9] Chaabane, S., Ferchichi, J., Kunisch, K.: Differentiability properties of the $L^{1}$-tracking functional and application to the Robin inverse problem. Inverse Probl. 20 (2004), 1083-1097. | MR

[10] Chalendar, I., Partington, J. R.: Approximation problems and representations of Hardy spaces in circular domains. Stud. Math. 136 (1999), 255-269. | MR | Zbl

[11] Chevreau, B., Pearcy, C. M., Shields, A. L.: Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces. J. Oper. Theory 6 (1981), 375-405. | MR

[12] Duren, P. L.: Theory of $H^p$ Spaces. Academic Press New York (1970). | MR

[13] Gaier, D., Pommerenke, C.: On the boundary behavior of conformal maps. Mich. Math. J. 14 (1967), 79-82. | DOI | MR | Zbl

[14] Leblond, J., Mahjoub, M., Partington, J. R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results. J. Inverse Ill-Posed Probl. 14 (2006), 189-204. | DOI | MR | Zbl

[15] Meftahi, H., Wielonsky, F.: Growth estimates in the Hardy-Sobolev space of an annular domain with applications. J. Math. Anal. Appl. 358 (2009), 98-109. | DOI | MR | Zbl

[16] Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 20 (1966), 733-737. | MR | Zbl

[17] Rudin, W.: Analytic functions of class $H^p$. Trans. Am. Math. Soc. 78 (1955), 46-66. | MR

[18] Sarason, D.: The $H^p$ Spaces of An Annulus. Mem. Am. Math. Soc. 56 (1965), Providence, RI. | MR

[19] Wang, H.-C.: Real Hardy spaces of an annulus. Bull. Austral. Math. Soc. 27 (1983), 91-105. | DOI | MR | Zbl

Cité par Sources :