Estimates in the Hardy-Sobolev space of the annulus and stability result
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 481-495
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^{k,\infty }$; $k \in {\mathbb {N}}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty }$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.
The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space $H^{k,\infty }$; $k \in {\mathbb {N}}^*$ of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces $H^{k,\infty }$, C. R., Math., Acad. Sci. Paris 347 (2009), 1001–1006. As an application, we prove a logarithmic stability result for the inverse problem of identifying a Robin parameter on a part of the boundary of an annular domain starting from its behavior on the complementary boundary part.
DOI :
10.1007/s10587-013-0032-2
Classification :
30C40, 30H10, 35R30
Keywords: annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter
Keywords: annular domain; Poisson kernel; Hardy-Sobolev space; logarithmic estimate; Robin parameter
@article{10_1007_s10587_013_0032_2,
author = {Feki, Imed},
title = {Estimates in the {Hardy-Sobolev} space of the annulus and stability result},
journal = {Czechoslovak Mathematical Journal},
pages = {481--495},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0032-2},
mrnumber = {3073973},
zbl = {06236426},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0032-2/}
}
TY - JOUR AU - Feki, Imed TI - Estimates in the Hardy-Sobolev space of the annulus and stability result JO - Czechoslovak Mathematical Journal PY - 2013 SP - 481 EP - 495 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0032-2/ DO - 10.1007/s10587-013-0032-2 LA - en ID - 10_1007_s10587_013_0032_2 ER -
%0 Journal Article %A Feki, Imed %T Estimates in the Hardy-Sobolev space of the annulus and stability result %J Czechoslovak Mathematical Journal %D 2013 %P 481-495 %V 63 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0032-2/ %R 10.1007/s10587-013-0032-2 %G en %F 10_1007_s10587_013_0032_2
Feki, Imed. Estimates in the Hardy-Sobolev space of the annulus and stability result. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 481-495. doi: 10.1007/s10587-013-0032-2
Cité par Sources :