On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 461-473
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan's sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers $m$, $ n$, $ k$, $ q$, with $k\geq {1}$ and $q\geq {3}$, and Dirichlet characters $\chi $, $\bar {\chi }$ modulo $q$ we define a mixed exponential sum $$ C(m,n;k;\chi ;\bar {\chi };q)= \sum \limits _{a=1}^{q}{\mkern -4mu\vrule width0pt height1em}' \chi (a)G_{k}(a,\bar {\chi })e \Big (\frac {ma^{k}+n\overline {a^{k}}}{q}\Big ), $$ with Dirichlet character $\chi $ and general Gauss sum $G_{k}(a,\bar {\chi })$ as coefficient, where $\sum \nolimits '$ denotes the summation over all $a$ such that $(a,q)=1$, $a\bar {a}\equiv {1}\mod {q}$ and $e(y)={\rm e}^{2\pi {\rm i} y}$. We mean value of $$ \sum _{m}\sum _{\chi }\sum _{\bar {\chi }}|C(m,n;k;\chi ;\bar {\chi };q)|^{4}, $$ and give an exact computational formula for it.
The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan's sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers $m$, $ n$, $ k$, $ q$, with $k\geq {1}$ and $q\geq {3}$, and Dirichlet characters $\chi $, $\bar {\chi }$ modulo $q$ we define a mixed exponential sum $$ C(m,n;k;\chi ;\bar {\chi };q)= \sum \limits _{a=1}^{q}{\mkern -4mu\vrule width0pt height1em}' \chi (a)G_{k}(a,\bar {\chi })e \Big (\frac {ma^{k}+n\overline {a^{k}}}{q}\Big ), $$ with Dirichlet character $\chi $ and general Gauss sum $G_{k}(a,\bar {\chi })$ as coefficient, where $\sum \nolimits '$ denotes the summation over all $a$ such that $(a,q)=1$, $a\bar {a}\equiv {1}\mod {q}$ and $e(y)={\rm e}^{2\pi {\rm i} y}$. We mean value of $$ \sum _{m}\sum _{\chi }\sum _{\bar {\chi }}|C(m,n;k;\chi ;\bar {\chi };q)|^{4}, $$ and give an exact computational formula for it.
DOI : 10.1007/s10587-013-0030-4
Classification : 11L03, 11L05
Keywords: mixed exponential sum; mean value; Dirichlet character; general Gauss sum; computational formula
@article{10_1007_s10587_013_0030_4,
     author = {Du, Yongguang and Liu, Huaning},
     title = {On the mean value of the mixed exponential sums with {Dirichlet} characters and general {Gauss} sum},
     journal = {Czechoslovak Mathematical Journal},
     pages = {461--473},
     year = {2013},
     volume = {63},
     number = {2},
     doi = {10.1007/s10587-013-0030-4},
     mrnumber = {3073971},
     zbl = {06236424},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0030-4/}
}
TY  - JOUR
AU  - Du, Yongguang
AU  - Liu, Huaning
TI  - On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 461
EP  - 473
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0030-4/
DO  - 10.1007/s10587-013-0030-4
LA  - en
ID  - 10_1007_s10587_013_0030_4
ER  - 
%0 Journal Article
%A Du, Yongguang
%A Liu, Huaning
%T On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum
%J Czechoslovak Mathematical Journal
%D 2013
%P 461-473
%V 63
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0030-4/
%R 10.1007/s10587-013-0030-4
%G en
%F 10_1007_s10587_013_0030_4
Du, Yongguang; Liu, Huaning. On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 461-473. doi: 10.1007/s10587-013-0030-4

[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics Springer, New York (1976). | MR | Zbl

[2] Calderón, C., Velasco, M. J. De, Zarate, M. J.: An explicit formula for the fourth moment of certain exponential sums. Acta Math. Hung. 130 (2011), 203-222. | DOI | MR | Zbl

[3] Chalk, J. H. H., Smith, R. A.: On Bombieri's estimate for exponential sums. Acta Arith. 18 (1971), 191-212. | DOI | MR | Zbl

[4] Davenport, H.: On certain exponential sums. J. Reine Angew. Math. 169 (1933), 158-176. | Zbl

[5] Estermann, T.: On Kloosterman's sum. Mathematika, Lond. 8 (1961), 83-86. | DOI | MR | Zbl

[6] Evans, R.: Seventh power moments of Kloosterman sums. Isr. J. Math. 175 (2010), 349-362. | DOI | MR | Zbl

[7] Gong, K., Wan, D. Q.: Power moments of Kloosterman sums.

[8] Kanemitsu, S., Tanigawa, Y., Yi, Y., Zhang, W. P.: On general Kloosterman sums. Ann. Univ. Sci. Budap. Rolondo Eötvös, Sect. Comput. 22 (2003), 151-160. | MR | Zbl

[9] Kloosterman, H. D.: On the representation of numbers in the form $ax^{2}+by^{2}+cz^{2}+dt^{2}$. Acta Math. 49 (1927), 407-464. | DOI | MR

[10] Liu, H.: Mean value of mixed exponential sums. Proc. Am. Math. Soc. 136 (2008), 1193-1203. | DOI | MR | Zbl

[11] Liu, H.: Mean value of some exponential sums and applications to Kloosterman sums. J. Math. Anal. Appl. 361 (2010), 205-223. | DOI | MR

[12] Liu, H., Zhang, W.: On the general $k$-th Kloosterman sums and its fourth power mean. Chin. Ann. Math., Ser. B 25 (2004), 97-102. | DOI | MR | Zbl

[13] Wang, T., Zhang, W. P.: On the fourth and sixth power mean of the mixed exponential sums. Sci. China Math. 41 (2011), 1-6.

[14] Xu, Z., Zhang, T., Zhang, W.: On the mean value of the two-term exponential sums with Dirichlet characters. J. Number Theory 123 (2007), 352-362. | DOI | MR | Zbl

[15] Ye, Y.: Estimation of exponential sums of polynomials of higher degrees II. Acta Arith. 93 (2000), 221-235. | DOI | MR | Zbl

[16] Zhang, W.: The fourth and sixth power mean of the classical Kloosterman sums. J. Number Theory 131 (2011), 228-238. | DOI | MR | Zbl

[17] Zhang, W.: On the general Kloosterman sum and its fourth power mean. J. Number Theory 104 (2004), 156-161. | DOI | MR | Zbl

[18] Zhang, W., Yi, Y., He, X.: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums. J. Number Theory 84 (2000), 199-213. | DOI | MR | Zbl

Cité par Sources :