Strongly $\mathcal {W}$-Gorenstein modules
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 441-449
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal {W}$ be a self-orthogonal class of left $R$-modules. We introduce a class of modules, which is called strongly $\mathcal {W}$-Gorenstein modules, and give some equivalent characterizations of them. Many important classes of modules are included in these modules. It is proved that the class of strongly $\mathcal {W}$-Gorenstein modules is closed under finite direct sums. We also give some sufficient conditions under which the property of strongly $\mathcal {W}$-Gorenstein module can be inherited by its submodules and quotient modules. As applications, many known results are generalized.
Let $\mathcal {W}$ be a self-orthogonal class of left $R$-modules. We introduce a class of modules, which is called strongly $\mathcal {W}$-Gorenstein modules, and give some equivalent characterizations of them. Many important classes of modules are included in these modules. It is proved that the class of strongly $\mathcal {W}$-Gorenstein modules is closed under finite direct sums. We also give some sufficient conditions under which the property of strongly $\mathcal {W}$-Gorenstein module can be inherited by its submodules and quotient modules. As applications, many known results are generalized.
DOI : 10.1007/s10587-013-0028-y
Classification : 16D40, 16D50, 16E05, 16E65, 18G20, 18G25
Keywords: self-orthogonal class; strongly $\mathcal {W}$-Gorenstein module; $\mathcal {C}$-resolution
@article{10_1007_s10587_013_0028_y,
     author = {Qiao, Husheng and Xie, Zongyang},
     title = {Strongly $\mathcal {W}${-Gorenstein} modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {441--449},
     year = {2013},
     volume = {63},
     number = {2},
     doi = {10.1007/s10587-013-0028-y},
     mrnumber = {3073969},
     zbl = {06236422},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0028-y/}
}
TY  - JOUR
AU  - Qiao, Husheng
AU  - Xie, Zongyang
TI  - Strongly $\mathcal {W}$-Gorenstein modules
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 441
EP  - 449
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0028-y/
DO  - 10.1007/s10587-013-0028-y
LA  - en
ID  - 10_1007_s10587_013_0028_y
ER  - 
%0 Journal Article
%A Qiao, Husheng
%A Xie, Zongyang
%T Strongly $\mathcal {W}$-Gorenstein modules
%J Czechoslovak Mathematical Journal
%D 2013
%P 441-449
%V 63
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0028-y/
%R 10.1007/s10587-013-0028-y
%G en
%F 10_1007_s10587_013_0028_y
Qiao, Husheng; Xie, Zongyang. Strongly $\mathcal {W}$-Gorenstein modules. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 441-449. doi: 10.1007/s10587-013-0028-y

[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. 2. ed., Graduate Texts in Mathematics 13. Springer New York (1992). | MR

[2] Auslander, M., Bridger, M.: Stable module theory. Mem. Am. Math. Soc. 94 (1969). | MR | Zbl

[3] Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective, and flat modules. J. Pure Appl. Algebra 210 (2007), 437-445. | DOI | MR | Zbl

[4] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. | DOI | MR | Zbl

[5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. Vol. 2. 2nd revised ed., de Gruyter Expositions in Mathematics 54. Walter de Gruyter Berlin (2000). | MR

[6] Enochs, E. E., Jenda, O. M. G.: On $D$-Gorenstein modules. Interactions between ring theory and representations of algebras. Proceedings of the conference, Murcia Marcel Dekker New York (2000), 159-168. | MR | Zbl

[7] Enochs, E. E., Jenda, O. M. G.: $\Omega$-Gorenstein projective and flat covers and $\Omega$-Gorenstein injective envelopes. Commun. Algebra 32 (2004), 1453-1470. | DOI | MR | Zbl

[8] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: Covers and envelopes by $V$-Gorenstein modules. Commun. Algebra 33 (2005), 4705-4717. | DOI | MR | Zbl

[9] Geng, Y., Ding, N.: $\mathcal{W}$-Gorenstein modules. J. Algebra 325 (2011), 132-146. | DOI | MR

[10] Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. Lond. Math. Soc., II. Ser. 77 (2008), 481-502. | DOI | MR | Zbl

[11] Wei, J.: $\omega$-Gorenstein modules. Commun. Algebra 36 (2008), 1817-1829. | DOI | MR | Zbl

[12] Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules. J. Algebra 320 (2008), 2659-2674. | DOI | MR | Zbl

Cité par Sources :