On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 421-434
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The reflexivity and transitivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane are investigated. The dichotomic behavior (transitive or reflexive) of these subspaces is shown. It refers to the similar dichotomic behavior for subspaces of Toeplitz operators on the Hardy space on the unit disc. The isomorphism between the Hardy spaces on the unit disc and the upper half-plane is used. To keep weak* homeomorphism between $L^\infty $ spaces on the unit circle and the real line we redefine the classical isomorphism between $L^1$ spaces.
The reflexivity and transitivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane are investigated. The dichotomic behavior (transitive or reflexive) of these subspaces is shown. It refers to the similar dichotomic behavior for subspaces of Toeplitz operators on the Hardy space on the unit disc. The isomorphism between the Hardy spaces on the unit disc and the upper half-plane is used. To keep weak* homeomorphism between $L^\infty $ spaces on the unit circle and the real line we redefine the classical isomorphism between $L^1$ spaces.
DOI : 10.1007/s10587-013-0026-0
Classification : 47B35, 47L05, 47L45, 47L80
Keywords: reflexive subspace; transitive subspace; Toeplitz operator; Hardy space; upper half-plane
@article{10_1007_s10587_013_0026_0,
     author = {M{\l}ocek, Wojciech and Ptak, Marek},
     title = {On the reflexivity of subspaces of {Toeplitz} operators on the {Hardy} space on the upper half-plane},
     journal = {Czechoslovak Mathematical Journal},
     pages = {421--434},
     year = {2013},
     volume = {63},
     number = {2},
     doi = {10.1007/s10587-013-0026-0},
     mrnumber = {3073967},
     zbl = {06236420},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0026-0/}
}
TY  - JOUR
AU  - Młocek, Wojciech
AU  - Ptak, Marek
TI  - On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 421
EP  - 434
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0026-0/
DO  - 10.1007/s10587-013-0026-0
LA  - en
ID  - 10_1007_s10587_013_0026_0
ER  - 
%0 Journal Article
%A Młocek, Wojciech
%A Ptak, Marek
%T On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane
%J Czechoslovak Mathematical Journal
%D 2013
%P 421-434
%V 63
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0026-0/
%R 10.1007/s10587-013-0026-0
%G en
%F 10_1007_s10587_013_0026_0
Młocek, Wojciech; Ptak, Marek. On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 421-434. doi: 10.1007/s10587-013-0026-0

[1] Azoff, E. A., Ptak, M.: A dichotomy for linear spaces of Toeplitz operators. J. Funct. Anal. 156 411-428 (1998). | DOI | MR | Zbl

[2] Bercovici, H., Foiaş, C., Pearcy, C.: Dual Algebras with Applications to Invariant Subspaces and Dilation Theory. Reg. Conf. Ser. Math. 56, 1985. | DOI | Zbl

[3] Brown, S., Chevreau, B., Pearcy, C.: Contractions with rich spectrum have invariant subspaces. J. Oper. Theory 1 (1979), 123-136. | MR | Zbl

[4] Conway, J. B.: A Course in Functional Analysis. 2nd ed. Graduate Texts in Mathematics, 96. Springer, New York (1990). | MR | Zbl

[5] Conway, J. B.: A Course in Operator Theory. Graduate Studies in Mathematics 21, American Mathematical Society, Providence (2000). | MR | Zbl

[6] Douglas, R. G.: Banach Algebra Techniques in Operator Theory. Pure and Applied Mathematics, 49. Academic Press, New York (1972). | MR | Zbl

[7] Duren, P. L.: Theory of $H^p$ Spaces. Pure and Applied Mathematics, 38. Academic Press, New York-London (1970). | MR

[8] Hoffman, K.: Banach Spaces of Analytic Functions. Prentice-Hall Series in Modern Analysis, Englewood Cliffs, N.J., Prentice-Hall (1962). | MR | Zbl

[9] Koosis, P.: Introduction to $H_p$ Spaces. London Mathematical Society Lecture Note Series. 40. Cambridge University Press, Cambridge (1980). | MR | Zbl

[10] Nikolski, N. K.: Operators, Functions, and Systems: An Easy Reading. Volume I: Hardy, Hankel, and Toeplitz. Transl. from the French by Andreas Hartmann. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence (2002). | MR | Zbl

[11] Sarason, D.: Invariant subspaces and unstarred operator algebras. Pac. J. Math. 17 (1966), 511-517. | DOI | MR | Zbl

Cité par Sources :