Keywords: reflexive subspace; transitive subspace; Toeplitz operator; Hardy space; upper half-plane
@article{10_1007_s10587_013_0026_0,
author = {M{\l}ocek, Wojciech and Ptak, Marek},
title = {On the reflexivity of subspaces of {Toeplitz} operators on the {Hardy} space on the upper half-plane},
journal = {Czechoslovak Mathematical Journal},
pages = {421--434},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0026-0},
mrnumber = {3073967},
zbl = {06236420},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0026-0/}
}
TY - JOUR AU - Młocek, Wojciech AU - Ptak, Marek TI - On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane JO - Czechoslovak Mathematical Journal PY - 2013 SP - 421 EP - 434 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0026-0/ DO - 10.1007/s10587-013-0026-0 LA - en ID - 10_1007_s10587_013_0026_0 ER -
%0 Journal Article %A Młocek, Wojciech %A Ptak, Marek %T On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane %J Czechoslovak Mathematical Journal %D 2013 %P 421-434 %V 63 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0026-0/ %R 10.1007/s10587-013-0026-0 %G en %F 10_1007_s10587_013_0026_0
Młocek, Wojciech; Ptak, Marek. On the reflexivity of subspaces of Toeplitz operators on the Hardy space on the upper half-plane. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 421-434. doi: 10.1007/s10587-013-0026-0
[1] Azoff, E. A., Ptak, M.: A dichotomy for linear spaces of Toeplitz operators. J. Funct. Anal. 156 411-428 (1998). | DOI | MR | Zbl
[2] Bercovici, H., Foiaş, C., Pearcy, C.: Dual Algebras with Applications to Invariant Subspaces and Dilation Theory. Reg. Conf. Ser. Math. 56, 1985. | DOI | Zbl
[3] Brown, S., Chevreau, B., Pearcy, C.: Contractions with rich spectrum have invariant subspaces. J. Oper. Theory 1 (1979), 123-136. | MR | Zbl
[4] Conway, J. B.: A Course in Functional Analysis. 2nd ed. Graduate Texts in Mathematics, 96. Springer, New York (1990). | MR | Zbl
[5] Conway, J. B.: A Course in Operator Theory. Graduate Studies in Mathematics 21, American Mathematical Society, Providence (2000). | MR | Zbl
[6] Douglas, R. G.: Banach Algebra Techniques in Operator Theory. Pure and Applied Mathematics, 49. Academic Press, New York (1972). | MR | Zbl
[7] Duren, P. L.: Theory of $H^p$ Spaces. Pure and Applied Mathematics, 38. Academic Press, New York-London (1970). | MR
[8] Hoffman, K.: Banach Spaces of Analytic Functions. Prentice-Hall Series in Modern Analysis, Englewood Cliffs, N.J., Prentice-Hall (1962). | MR | Zbl
[9] Koosis, P.: Introduction to $H_p$ Spaces. London Mathematical Society Lecture Note Series. 40. Cambridge University Press, Cambridge (1980). | MR | Zbl
[10] Nikolski, N. K.: Operators, Functions, and Systems: An Easy Reading. Volume I: Hardy, Hankel, and Toeplitz. Transl. from the French by Andreas Hartmann. Mathematical Surveys and Monographs, 92. American Mathematical Society, Providence (2002). | MR | Zbl
[11] Sarason, D.: Invariant subspaces and unstarred operator algebras. Pac. J. Math. 17 (1966), 511-517. | DOI | MR | Zbl
Cité par Sources :