Keywords: Tauberian theorem; Laplace transform; the converse of Abel's theorem; Littlewood's Tauberian theorem; Abel and Cesàro summability; distributional Tauberian theorem; asymptotic behavior of generalized function
@article{10_1007_s10587_013_0025_1,
author = {Estrada, Ricardo and Vindas, Jasson},
title = {Distributional versions of {Littlewood's} {Tauberian} theorem},
journal = {Czechoslovak Mathematical Journal},
pages = {403--420},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0025-1},
mrnumber = {3073966},
zbl = {06236419},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0025-1/}
}
TY - JOUR AU - Estrada, Ricardo AU - Vindas, Jasson TI - Distributional versions of Littlewood's Tauberian theorem JO - Czechoslovak Mathematical Journal PY - 2013 SP - 403 EP - 420 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0025-1/ DO - 10.1007/s10587-013-0025-1 LA - en ID - 10_1007_s10587_013_0025_1 ER -
%0 Journal Article %A Estrada, Ricardo %A Vindas, Jasson %T Distributional versions of Littlewood's Tauberian theorem %J Czechoslovak Mathematical Journal %D 2013 %P 403-420 %V 63 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0025-1/ %R 10.1007/s10587-013-0025-1 %G en %F 10_1007_s10587_013_0025_1
Estrada, Ricardo; Vindas, Jasson. Distributional versions of Littlewood's Tauberian theorem. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 403-420. doi: 10.1007/s10587-013-0025-1
[1] Çanak, I., Erdem, Y., Totur, Ü.: Some Tauberian theorems for $(A)(C,\alpha)$ summability method. Math. Comput. Modelling 52 (2010), 738-743. | DOI | MR | Zbl
[2] Chandrasekharan, K., Minakshisundaram, S.: Typical Means. (Tata Institute of Fundamental Research. Monographs on mathematics and physics 1) Oxford University Press (1952). | MR | Zbl
[3] Drozzinov, J. N., Zav'jalov, B. I.: Quasi-asymptotics of generalized functions and Tauberian theorems in the complex domain. Math. USSR, Sb. 31 (1977), 329-345. | DOI | Zbl
[4] Estrada, R.: The Cesàro behaviour of distributions. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 454 (1998), 2425-2443. | DOI | MR | Zbl
[5] Estrada, R., Kanwal, R. P.: Asymptotic separation of variables. J. Math. Anal. Appl. 178 (1993), 130-142. | DOI | MR | Zbl
[6] Estrada, R., Kanwal, R. P.: A Distributional Approach to Asymptotics. Theory and Applications. 2nd revised and expanded edition. Birkhäuser, Boston (2002). | MR | Zbl
[7] Estrada, R., Vindas, J.: On the point behavior of Fourier series and conjugate series. Z. Anal. Anwend. 29 (2010), 487-504. | DOI | MR | Zbl
[8] Estrada, R., Vindas, J.: On Tauber's second Tauberian theorem. Tohoku Math. J. 64 (2012), 539-560. | DOI | MR
[9] Hardy, G. H.: Divergent Series. At the Clarendon Press (Geoffrey Cumberlege) Oxford (1949). | MR | Zbl
[10] Hardy, G. H., Littlewood, J. E.: Contributions to the arithmetic theory of series. Proc. London Math. Soc. 11 (1913), 411-478. | MR
[11] Hardy, G. H., Littlewood, J. E.: Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive. Proc. London Math. Soc. 13 (1914), 174-191. | MR
[12] Hardy, G. H., Littlewood, J. E.: Notes on the theory of series. XVI.: Two Tauberian theorems. J. Lond. Math. Soc. 6 (1931), 281-286. | DOI | MR | Zbl
[13] Ingham, A. E.: The equivalence theorem for Cesàro and Riesz summability. Publ. Ramanujan Inst. 1 (1968), 107-113. | MR
[14] Korevaar, J.: Tauberian Theory. A Century of Developments. Grundlehren der Mathematischen Wissenschaften 329 Springer, Berlin (2004). | DOI | MR | Zbl
[15] Littlewood, J. E.: The converse of Abel's theorem on power series. Proc. London Math. Soc. 9 (1911), 434-448. | MR
[16] Pati, T.: On Tauberian theorems. Sequences, Summability and Fourier analysis Narosa Publishing House (2005), 234-251.
[17] Peetre, J.: On the value of a distribution at a point. Port. Math. 27 (1968), 149-159. | MR | Zbl
[18] Pilipović, S., Stanković, B.: Wiener Tauberian theorems for distributions. J. Lond. Math. Soc., II. Ser. 47 (1993), 507-515. | DOI | MR | Zbl
[19] Pilipović, S., Stanković, B.: Tauberian theorems for integral transforms of distributions. Acta Math. Hung. 74 (1997), 135-153. | DOI | MR | Zbl
[20] Pilipović, S., Stanković, B., Vindas, J.: Asymptotic Behavior of Generalized Functions. Series on Analysis, Applications and Computations 5. World Scientific Hackensack, NJ (2012). | MR
[21] Schwartz, L.: Théorie des Distributions. Nouvelle Édition, Entiérement Corrigée, Refondue et Augmentée. Publications de l'Institut de Mathématique de l'Université de Strasbourg Hermann, Paris (1966), French. | MR | Zbl
[22] Szász, O.: Converse theorems of summability for Dirichlet's series. Trans. Am. Math. Soc. 39 (1936), 117-130. | DOI | MR | Zbl
[23] Tauber, A.: Ein Satz aus der Theorie der unendlichen Reihen. Monatsh. Math. Phys. 8 (1897), 273-277 German. | DOI | MR
[24] Vindas, J.: Structural theorems for quasiasymptotics of distributions at infinity. Publ. Inst. Math., Nouv. Sér. 84 (2008), 159-174. | DOI | MR | Zbl
[25] Vindas, J., Estrada, R.: A Tauberian theorem for distributional point values. Arch. Math. 91 (2008), 247-253. | DOI | MR | Zbl
[26] Vindas, J., Pilipović, S.: Structural theorems for quasiasymptotics of distributions at the origin. Math. Nachr. 282 (2009), 1584-1599. | DOI | MR | Zbl
[27] Vladimirov, V. S.: Methods of The Theory of Generalized Functions. Analytical Methods and Special Functions 6 Taylor & Francis, London (2002). | MR | Zbl
[28] Vladimirov, V. S., Drozzinov, J. N., Zav'jalov, B. I.: Tauberian Theorems for Generalized Functions. Mathematics and Its Applications (Soviet Series), 10 Kluwer Academic Publishers, Dordrecht (1988). | MR
[29] Wiener, N.: Tauberian theorems. Ann. Math. (2) 33 (1932), 1-100. | DOI | MR | Zbl
Cité par Sources :