Distributional versions of Littlewood's Tauberian theorem
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 403-420
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series.
We provide several general versions of Littlewood's Tauberian theorem. These versions are applicable to Laplace transforms of Schwartz distributions. We employ two types of Tauberian hypotheses; the first kind involves distributional boundedness, while the second type imposes a one-sided assumption on the Cesàro behavior of the distribution. We apply these Tauberian results to deduce a number of Tauberian theorems for power series and Stieltjes integrals where Cesàro summability follows from Abel summability. We also use our general results to give a new simple proof of the classical Littlewood one-sided Tauberian theorem for power series.
DOI : 10.1007/s10587-013-0025-1
Classification : 40E05, 40G05, 40G10, 44A10, 46F12, 46F20
Keywords: Tauberian theorem; Laplace transform; the converse of Abel's theorem; Littlewood's Tauberian theorem; Abel and Cesàro summability; distributional Tauberian theorem; asymptotic behavior of generalized function
@article{10_1007_s10587_013_0025_1,
     author = {Estrada, Ricardo and Vindas, Jasson},
     title = {Distributional versions of {Littlewood's} {Tauberian} theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {403--420},
     year = {2013},
     volume = {63},
     number = {2},
     doi = {10.1007/s10587-013-0025-1},
     mrnumber = {3073966},
     zbl = {06236419},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0025-1/}
}
TY  - JOUR
AU  - Estrada, Ricardo
AU  - Vindas, Jasson
TI  - Distributional versions of Littlewood's Tauberian theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 403
EP  - 420
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0025-1/
DO  - 10.1007/s10587-013-0025-1
LA  - en
ID  - 10_1007_s10587_013_0025_1
ER  - 
%0 Journal Article
%A Estrada, Ricardo
%A Vindas, Jasson
%T Distributional versions of Littlewood's Tauberian theorem
%J Czechoslovak Mathematical Journal
%D 2013
%P 403-420
%V 63
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0025-1/
%R 10.1007/s10587-013-0025-1
%G en
%F 10_1007_s10587_013_0025_1
Estrada, Ricardo; Vindas, Jasson. Distributional versions of Littlewood's Tauberian theorem. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 403-420. doi: 10.1007/s10587-013-0025-1

[1] Çanak, I., Erdem, Y., Totur, Ü.: Some Tauberian theorems for $(A)(C,\alpha)$ summability method. Math. Comput. Modelling 52 (2010), 738-743. | DOI | MR | Zbl

[2] Chandrasekharan, K., Minakshisundaram, S.: Typical Means. (Tata Institute of Fundamental Research. Monographs on mathematics and physics 1) Oxford University Press (1952). | MR | Zbl

[3] Drozzinov, J. N., Zav'jalov, B. I.: Quasi-asymptotics of generalized functions and Tauberian theorems in the complex domain. Math. USSR, Sb. 31 (1977), 329-345. | DOI | Zbl

[4] Estrada, R.: The Cesàro behaviour of distributions. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 454 (1998), 2425-2443. | DOI | MR | Zbl

[5] Estrada, R., Kanwal, R. P.: Asymptotic separation of variables. J. Math. Anal. Appl. 178 (1993), 130-142. | DOI | MR | Zbl

[6] Estrada, R., Kanwal, R. P.: A Distributional Approach to Asymptotics. Theory and Applications. 2nd revised and expanded edition. Birkhäuser, Boston (2002). | MR | Zbl

[7] Estrada, R., Vindas, J.: On the point behavior of Fourier series and conjugate series. Z. Anal. Anwend. 29 (2010), 487-504. | DOI | MR | Zbl

[8] Estrada, R., Vindas, J.: On Tauber's second Tauberian theorem. Tohoku Math. J. 64 (2012), 539-560. | DOI | MR

[9] Hardy, G. H.: Divergent Series. At the Clarendon Press (Geoffrey Cumberlege) Oxford (1949). | MR | Zbl

[10] Hardy, G. H., Littlewood, J. E.: Contributions to the arithmetic theory of series. Proc. London Math. Soc. 11 (1913), 411-478. | MR

[11] Hardy, G. H., Littlewood, J. E.: Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive. Proc. London Math. Soc. 13 (1914), 174-191. | MR

[12] Hardy, G. H., Littlewood, J. E.: Notes on the theory of series. XVI.: Two Tauberian theorems. J. Lond. Math. Soc. 6 (1931), 281-286. | DOI | MR | Zbl

[13] Ingham, A. E.: The equivalence theorem for Cesàro and Riesz summability. Publ. Ramanujan Inst. 1 (1968), 107-113. | MR

[14] Korevaar, J.: Tauberian Theory. A Century of Developments. Grundlehren der Mathematischen Wissenschaften 329 Springer, Berlin (2004). | DOI | MR | Zbl

[15] Littlewood, J. E.: The converse of Abel's theorem on power series. Proc. London Math. Soc. 9 (1911), 434-448. | MR

[16] Pati, T.: On Tauberian theorems. Sequences, Summability and Fourier analysis Narosa Publishing House (2005), 234-251.

[17] Peetre, J.: On the value of a distribution at a point. Port. Math. 27 (1968), 149-159. | MR | Zbl

[18] Pilipović, S., Stanković, B.: Wiener Tauberian theorems for distributions. J. Lond. Math. Soc., II. Ser. 47 (1993), 507-515. | DOI | MR | Zbl

[19] Pilipović, S., Stanković, B.: Tauberian theorems for integral transforms of distributions. Acta Math. Hung. 74 (1997), 135-153. | DOI | MR | Zbl

[20] Pilipović, S., Stanković, B., Vindas, J.: Asymptotic Behavior of Generalized Functions. Series on Analysis, Applications and Computations 5. World Scientific Hackensack, NJ (2012). | MR

[21] Schwartz, L.: Théorie des Distributions. Nouvelle Édition, Entiérement Corrigée, Refondue et Augmentée. Publications de l'Institut de Mathématique de l'Université de Strasbourg Hermann, Paris (1966), French. | MR | Zbl

[22] Szász, O.: Converse theorems of summability for Dirichlet's series. Trans. Am. Math. Soc. 39 (1936), 117-130. | DOI | MR | Zbl

[23] Tauber, A.: Ein Satz aus der Theorie der unendlichen Reihen. Monatsh. Math. Phys. 8 (1897), 273-277 German. | DOI | MR

[24] Vindas, J.: Structural theorems for quasiasymptotics of distributions at infinity. Publ. Inst. Math., Nouv. Sér. 84 (2008), 159-174. | DOI | MR | Zbl

[25] Vindas, J., Estrada, R.: A Tauberian theorem for distributional point values. Arch. Math. 91 (2008), 247-253. | DOI | MR | Zbl

[26] Vindas, J., Pilipović, S.: Structural theorems for quasiasymptotics of distributions at the origin. Math. Nachr. 282 (2009), 1584-1599. | DOI | MR | Zbl

[27] Vladimirov, V. S.: Methods of The Theory of Generalized Functions. Analytical Methods and Special Functions 6 Taylor & Francis, London (2002). | MR | Zbl

[28] Vladimirov, V. S., Drozzinov, J. N., Zav'jalov, B. I.: Tauberian Theorems for Generalized Functions. Mathematics and Its Applications (Soviet Series), 10 Kluwer Academic Publishers, Dordrecht (1988). | MR

[29] Wiener, N.: Tauberian theorems. Ann. Math. (2) 33 (1932), 1-100. | DOI | MR | Zbl

Cité par Sources :