Totally reflexive modules with respect to a semidualizing bimodule
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 385-402
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $S$ and $R$ be two associative rings, let $ _{S}C_{R}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_{S}C_{R}$ and we give a characterization of the class of the totally $C_{R}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_{R}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.
Let $S$ and $R$ be two associative rings, let $ _{S}C_{R}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_{S}C_{R}$ and we give a characterization of the class of the totally $C_{R}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_{R}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.
DOI : 10.1007/s10587-013-0024-2
Classification : 16D20, 16D40, 16E05, 16E10, 16E30
Keywords: semidualizing bimodule; totally reflexive module; Bass class; precover; preenvelope
@article{10_1007_s10587_013_0024_2,
     author = {Zhang, Zhen and Zhu, Xiaosheng and Yan, Xiaoguang},
     title = {Totally reflexive modules with respect to a semidualizing bimodule},
     journal = {Czechoslovak Mathematical Journal},
     pages = {385--402},
     year = {2013},
     volume = {63},
     number = {2},
     doi = {10.1007/s10587-013-0024-2},
     mrnumber = {3073965},
     zbl = {06236418},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0024-2/}
}
TY  - JOUR
AU  - Zhang, Zhen
AU  - Zhu, Xiaosheng
AU  - Yan, Xiaoguang
TI  - Totally reflexive modules with respect to a semidualizing bimodule
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 385
EP  - 402
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0024-2/
DO  - 10.1007/s10587-013-0024-2
LA  - en
ID  - 10_1007_s10587_013_0024_2
ER  - 
%0 Journal Article
%A Zhang, Zhen
%A Zhu, Xiaosheng
%A Yan, Xiaoguang
%T Totally reflexive modules with respect to a semidualizing bimodule
%J Czechoslovak Mathematical Journal
%D 2013
%P 385-402
%V 63
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0024-2/
%R 10.1007/s10587-013-0024-2
%G en
%F 10_1007_s10587_013_0024_2
Zhang, Zhen; Zhu, Xiaosheng; Yan, Xiaoguang. Totally reflexive modules with respect to a semidualizing bimodule. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 385-402. doi: 10.1007/s10587-013-0024-2

[1] Auslander, M., Mangeney, M., Peskine, Ch., Szpiro, L.: Anneaux de Gorenstein, et Torsion en Algèbre Commutative. Ecole Normale Supérieure de Jeunes Filles, Paris (1967), French.

[2] Auslander, M., Bridger, M.: Stable Module Theory. Mem. Am. Math. Soc. 94 (1969). | MR | Zbl

[3] Araya, T., Takahashi, R., Yoshino, Y.: Homological invariants associated to semi-dualizing bimodules. J. Math. Kyoto Univ. 45 (2005), 287-306. | DOI | MR | Zbl

[4] Christensen, L. W.: Gorenstein Dimensions. Lecture Notes in Mathematics 1747, Springer, Berlin (2000). | DOI | MR | Zbl

[5] Christensen, L. W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions---a functorial description with applications. J. Algebra 302 (2006), 231-279. | DOI | MR | Zbl

[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). | MR | Zbl

[7] Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31 (1972), 267-284. | DOI | MR

[8] Golod, E. S.: G-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova 165 (1984), 62-66. | MR | Zbl

[9] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | Zbl

[10] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. | DOI | MR

[11] Holm, H., Jørgensen, P.: Cotorsion pairs induced by duality pairs. J. Commut. Algebra 1 (2009), 621-633. | DOI | MR

[12] Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781-808. | DOI | MR | Zbl

[13] Mantese, F., Reiten, I.: Wakamatsu tilting modules. J. Algebra 278 (2004), 532-552. | DOI | MR | Zbl

[14] Sather-Wagstaff, S.: Semidualizing modules and the divisor class group. Ill. J. Math. 51 255-285 (2007). | DOI | MR | Zbl

[15] Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theory 14 403-428 (2011). | DOI | MR

[16] Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules. J. Algebra 324 (2010), 2336-2368. | DOI | MR | Zbl

[17] Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules. Math. Z. 264 (2010), 571-600. | DOI | MR | Zbl

[18] Takahashi, R., White, D.: Homological aspects of semidualizing modules. Math. Scand. 106 (2010), 5-22. | DOI | MR | Zbl

[19] Vasconcelos, W. V.: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14. Notas de Matematica 5. North-Holland Publishing Comp., Amsterdam (1974). | MR | Zbl

[20] Wakamatsu, T.: Tilting modules and Auslander's Gorenstein property. J. Algebra 275 (2004), 3-39. | DOI | MR | Zbl

[21] White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra 2 (2010), 111-137. | DOI | MR

[22] Yassemi, S.: $G$-dimension. Math. Scand. 77 (1995), 161-174. | MR | Zbl

Cité par Sources :