Totally reflexive modules with respect to a semidualizing bimodule
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 385-402
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $S$ and $R$ be two associative rings, let $ _{S}C_{R}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_{S}C_{R}$ and we give a characterization of the class of the totally $C_{R}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_{R}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.
Let $S$ and $R$ be two associative rings, let $ _{S}C_{R}$ be a semidualizing $(S,R)$-bimodule. We introduce and investigate properties of the totally reflexive module with respect to $_{S}C_{R}$ and we give a characterization of the class of the totally $C_{R}$-reflexive modules over any ring $R$. Moreover, we show that the totally $C_{R}$-reflexive module with finite projective dimension is exactly the finitely generated projective right $R$-module. We then study the relations between the class of totally reflexive modules and the Bass class with respect to a semidualizing bimodule. The paper contains several results which are new in the commutative Noetherian setting.
DOI :
10.1007/s10587-013-0024-2
Classification :
16D20, 16D40, 16E05, 16E10, 16E30
Keywords: semidualizing bimodule; totally reflexive module; Bass class; precover; preenvelope
Keywords: semidualizing bimodule; totally reflexive module; Bass class; precover; preenvelope
@article{10_1007_s10587_013_0024_2,
author = {Zhang, Zhen and Zhu, Xiaosheng and Yan, Xiaoguang},
title = {Totally reflexive modules with respect to a semidualizing bimodule},
journal = {Czechoslovak Mathematical Journal},
pages = {385--402},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0024-2},
mrnumber = {3073965},
zbl = {06236418},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0024-2/}
}
TY - JOUR AU - Zhang, Zhen AU - Zhu, Xiaosheng AU - Yan, Xiaoguang TI - Totally reflexive modules with respect to a semidualizing bimodule JO - Czechoslovak Mathematical Journal PY - 2013 SP - 385 EP - 402 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0024-2/ DO - 10.1007/s10587-013-0024-2 LA - en ID - 10_1007_s10587_013_0024_2 ER -
%0 Journal Article %A Zhang, Zhen %A Zhu, Xiaosheng %A Yan, Xiaoguang %T Totally reflexive modules with respect to a semidualizing bimodule %J Czechoslovak Mathematical Journal %D 2013 %P 385-402 %V 63 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0024-2/ %R 10.1007/s10587-013-0024-2 %G en %F 10_1007_s10587_013_0024_2
Zhang, Zhen; Zhu, Xiaosheng; Yan, Xiaoguang. Totally reflexive modules with respect to a semidualizing bimodule. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 385-402. doi: 10.1007/s10587-013-0024-2
Cité par Sources :