The method of infinite ascent applied on $A^4 \pm n B^3 = C^2$
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 369-374
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Each of the Diophantine equations $A^4 \pm nB^3 = C^2$ has an infinite number of integral solutions $(A, B, C)$ for any positive integer $n$. In this paper, we will show how the method of infinite ascent could be applied to generate these solutions. We will investigate the conditions when $A$, $B$ and $C$ are pair-wise co-prime. As a side result of this investigation, we will show a method of generating an infinite number of co-prime integral solutions $(A, B, C)$ of the Diophantine equation $aA^3 + cB^3 = C^2$ for any co-prime integer pair $(a,c)$.
Each of the Diophantine equations $A^4 \pm nB^3 = C^2$ has an infinite number of integral solutions $(A, B, C)$ for any positive integer $n$. In this paper, we will show how the method of infinite ascent could be applied to generate these solutions. We will investigate the conditions when $A$, $B$ and $C$ are pair-wise co-prime. As a side result of this investigation, we will show a method of generating an infinite number of co-prime integral solutions $(A, B, C)$ of the Diophantine equation $aA^3 + cB^3 = C^2$ for any co-prime integer pair $(a,c)$.
DOI :
10.1007/s10587-013-0022-4
Classification :
11D41, 11D72
Keywords: method of infinite ascent; Diophantine equation $A^4 \pm nB^3 = C^2$
Keywords: method of infinite ascent; Diophantine equation $A^4 \pm nB^3 = C^2$
@article{10_1007_s10587_013_0022_4,
author = {Jena, Susil Kumar},
title = {The method of infinite ascent applied on $A^4 \pm n B^3 = C^2$},
journal = {Czechoslovak Mathematical Journal},
pages = {369--374},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0022-4},
mrnumber = {3073963},
zbl = {06236416},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0022-4/}
}
TY - JOUR AU - Jena, Susil Kumar TI - The method of infinite ascent applied on $A^4 \pm n B^3 = C^2$ JO - Czechoslovak Mathematical Journal PY - 2013 SP - 369 EP - 374 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0022-4/ DO - 10.1007/s10587-013-0022-4 LA - en ID - 10_1007_s10587_013_0022_4 ER -
%0 Journal Article %A Jena, Susil Kumar %T The method of infinite ascent applied on $A^4 \pm n B^3 = C^2$ %J Czechoslovak Mathematical Journal %D 2013 %P 369-374 %V 63 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0022-4/ %R 10.1007/s10587-013-0022-4 %G en %F 10_1007_s10587_013_0022_4
Jena, Susil Kumar. The method of infinite ascent applied on $A^4 \pm n B^3 = C^2$. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 369-374. doi: 10.1007/s10587-013-0022-4
Cité par Sources :