Indecomposable (1,3)-groups and a matrix problem
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 307-355
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Almost completely decomposable groups with a critical typeset of type $(1,3)$ and a $p$-primary regulator quotient are studied. It is shown that there are, depending on the exponent of the regulator quotient $p^k$, either no indecomposables if $k\leq 2$; only six near isomorphism types of indecomposables if $k=3$; and indecomposables of arbitrary large rank if $k\geq 4$.
Almost completely decomposable groups with a critical typeset of type $(1,3)$ and a $p$-primary regulator quotient are studied. It is shown that there are, depending on the exponent of the regulator quotient $p^k$, either no indecomposables if $k\leq 2$; only six near isomorphism types of indecomposables if $k=3$; and indecomposables of arbitrary large rank if $k\geq 4$.
DOI : 10.1007/s10587-013-0020-6
Classification : 15A21, 16G20, 20K15, 20K25, 20K35
Keywords: almost completely decomposable group; indecomposable; representation
@article{10_1007_s10587_013_0020_6,
     author = {Arnold, David M. and Mader, Adolf and Mutzbauer, Otto and Solak, Ebru},
     title = {Indecomposable (1,3)-groups and a matrix problem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {307--355},
     year = {2013},
     volume = {63},
     number = {2},
     doi = {10.1007/s10587-013-0020-6},
     mrnumber = {3073961},
     zbl = {06236414},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0020-6/}
}
TY  - JOUR
AU  - Arnold, David M.
AU  - Mader, Adolf
AU  - Mutzbauer, Otto
AU  - Solak, Ebru
TI  - Indecomposable (1,3)-groups and a matrix problem
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 307
EP  - 355
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0020-6/
DO  - 10.1007/s10587-013-0020-6
LA  - en
ID  - 10_1007_s10587_013_0020_6
ER  - 
%0 Journal Article
%A Arnold, David M.
%A Mader, Adolf
%A Mutzbauer, Otto
%A Solak, Ebru
%T Indecomposable (1,3)-groups and a matrix problem
%J Czechoslovak Mathematical Journal
%D 2013
%P 307-355
%V 63
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0020-6/
%R 10.1007/s10587-013-0020-6
%G en
%F 10_1007_s10587_013_0020_6
Arnold, David M.; Mader, Adolf; Mutzbauer, Otto; Solak, Ebru. Indecomposable (1,3)-groups and a matrix problem. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 307-355. doi: 10.1007/s10587-013-0020-6

[1] Arnold, D. M.: Finite Rank Torsion-Free Abelian Groups and Rings. Lecture Notes 931. Springer Berlin (1982). | MR

[2] Arnold, D. M.: Abelian Groups and Representations of Partially Ordered Finite Sets. CMS Advanced Books in Mathematics. Springer New York (2000). | MR

[3] Arnold, D. M., Dugas, M.: Finite rank Butler groups with small typesets. Abelian Groups and Modules (Dublin 1998). Trends in Math. P. Eklof et al. Birkhäuser Basel (1998), 107-119. | MR

[4] Arnold, D. M., Simson, D.: Representations of finite partially ordered sets over commutative artinian uniserial rings. J. Pure Appl. Algebra 205 (2006), 640-659. | DOI | MR | Zbl

[5] Arnold, D. M., Simson, D.: Representations of finite posets over discrete valuation rings. Commun. Algebra 35 (2007), 3128-3144. | DOI | MR | Zbl

[6] Arnold, D. M., Mader, A., Mutzbauer, O., Solak, E.: Almost completely decomposable groups and unbounded representation type. J. Algebra 349 (2012), 50-62. | DOI | MR | Zbl

[7] Bondarenko, V. M.: Representations of bundles of semichained sets and their applications. St. Petersburg Math. J. 3 (1992), 973-996. | MR

[8] Burkhardt, R.: On a special class of almost completely decomposable groups I. Abelian Groups and Modules. Proc. Udine Con. 1984, CISM Courses and Lecture 287 R. Göbel at al. Springer Vienna (1984), 141-150. | MR

[9] Corner, A. L. S.: A note on rank and direct decompositions of torsion-free Abelian groups. Proc. Camb. Philos. Soc. 57 (1961), 230-233. | DOI | MR | Zbl

[10] Drozd, J. A.: Matrix problems and categories of matrices. J. Sov. Math. 3 (1975), 692-699. | DOI

[11] Dugas, M.: $BR$-groups with type set $(1,2)$. Forum Math. 13 (2001), 143-148. | DOI | MR

[12] Faticoni, T., Schultz, P.: Direct decompositions of acd groups with primary regulating index. Abelian Groups and Modules. Proc. 1995 Colorado Springs Conference D. Arnold et al. Marcel Dekker New York (1996), 233-241. | MR | Zbl

[13] Fuchs, L.: Infinite Abelian Groups, Vol. II. Pure and Applied Mathematics 36 Academic Press, New York (1973). | MR | Zbl

[14] Jacobson, N.: Basic Algebra I. W. H. Freeman and Company San Francisco (1974). | MR | Zbl

[15] Lady, E. L.: Almost completely decomposable torsion-free Abelian groups. Proc. Am. Math. Soc. 45 (1974), 41-47. | DOI | MR | Zbl

[16] Lady, E. L.: Nearly isomorphic torsion-free abelian groups. J. Algebra 35 (1975), 235-238. | DOI | MR | Zbl

[17] Mader, A.: Almost Completely Decomposable Groups. Gordon and Breach Amsterdam (2000). | MR | Zbl

[18] Mader, A., Strüngmann, L.: Generalized almost completely decomposable groups. Rend. Semin. Mat. Univ. Padova 113 (2005), 47-69. | MR | Zbl

[19] Mutzbauer, O.: Regulating subgroups of Butler groups. Abelian Groups. Proc. 1991 Curaçao Conf. Lecture Notes Pure Appl. Math. 146 L. Fuchs Marcel Dekker New York (1993), 209-216. | MR | Zbl

[20] Mutzbauer, O., Solak, E.: $(1,2)$-groups with $p^3$-regulator quotient. J. Algebra 320 (2008), 3821-3831. | DOI | MR

[21] Nazarova, L. A., Roiter, A. V.: Finitely generated modules over a dyad of local Dedekind rings, and finite groups with an Abelian normal divisor of index $p$. Math. USSR Izv. 3 (1969), 65-89 Russian. | DOI

[22] Nazarova, L. A., Roiter, A. V., Sergeichuk, V. V., Bondarenko, V. M.: Applications of modules over a dyad for the classification of finite $p$-groups possessing an Abelian subgroup of index $p$, and of pairs of mutually annihilating operators. J. Sov. Math. 3 (1975), 636-653 translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 28 (1972),69-92 English. Russian original. | DOI | MR

[23] Sergeichuk, V. V.: Canonical matrices for linear matrix problems. Linear Algebra Appl. 317 (2000), 53-102. | DOI | MR | Zbl

[24] Shapiro, H.: A survey of canonical forms and invariants for unitary similarity. Linear Algebra Appl. 147 (1991), 101-167. | MR | Zbl

[25] Simson, D.: Linear Representations of Partially Ordered Sets and Vector Space Categories. Algebra, Logic and Applications Appl., Vol. 4. Gordon and Breach Brooklyn (2000). | MR

[26] Solak, E.: Almost completely decomposable groups of type $(1,2)$. Dissertation Würzburg. (2007).

Cité par Sources :