Keywords: almost completely decomposable group; indecomposable; representation
@article{10_1007_s10587_013_0020_6,
author = {Arnold, David M. and Mader, Adolf and Mutzbauer, Otto and Solak, Ebru},
title = {Indecomposable (1,3)-groups and a matrix problem},
journal = {Czechoslovak Mathematical Journal},
pages = {307--355},
year = {2013},
volume = {63},
number = {2},
doi = {10.1007/s10587-013-0020-6},
mrnumber = {3073961},
zbl = {06236414},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0020-6/}
}
TY - JOUR AU - Arnold, David M. AU - Mader, Adolf AU - Mutzbauer, Otto AU - Solak, Ebru TI - Indecomposable (1,3)-groups and a matrix problem JO - Czechoslovak Mathematical Journal PY - 2013 SP - 307 EP - 355 VL - 63 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0020-6/ DO - 10.1007/s10587-013-0020-6 LA - en ID - 10_1007_s10587_013_0020_6 ER -
%0 Journal Article %A Arnold, David M. %A Mader, Adolf %A Mutzbauer, Otto %A Solak, Ebru %T Indecomposable (1,3)-groups and a matrix problem %J Czechoslovak Mathematical Journal %D 2013 %P 307-355 %V 63 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0020-6/ %R 10.1007/s10587-013-0020-6 %G en %F 10_1007_s10587_013_0020_6
Arnold, David M.; Mader, Adolf; Mutzbauer, Otto; Solak, Ebru. Indecomposable (1,3)-groups and a matrix problem. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 2, pp. 307-355. doi: 10.1007/s10587-013-0020-6
[1] Arnold, D. M.: Finite Rank Torsion-Free Abelian Groups and Rings. Lecture Notes 931. Springer Berlin (1982). | MR
[2] Arnold, D. M.: Abelian Groups and Representations of Partially Ordered Finite Sets. CMS Advanced Books in Mathematics. Springer New York (2000). | MR
[3] Arnold, D. M., Dugas, M.: Finite rank Butler groups with small typesets. Abelian Groups and Modules (Dublin 1998). Trends in Math. P. Eklof et al. Birkhäuser Basel (1998), 107-119. | MR
[4] Arnold, D. M., Simson, D.: Representations of finite partially ordered sets over commutative artinian uniserial rings. J. Pure Appl. Algebra 205 (2006), 640-659. | DOI | MR | Zbl
[5] Arnold, D. M., Simson, D.: Representations of finite posets over discrete valuation rings. Commun. Algebra 35 (2007), 3128-3144. | DOI | MR | Zbl
[6] Arnold, D. M., Mader, A., Mutzbauer, O., Solak, E.: Almost completely decomposable groups and unbounded representation type. J. Algebra 349 (2012), 50-62. | DOI | MR | Zbl
[7] Bondarenko, V. M.: Representations of bundles of semichained sets and their applications. St. Petersburg Math. J. 3 (1992), 973-996. | MR
[8] Burkhardt, R.: On a special class of almost completely decomposable groups I. Abelian Groups and Modules. Proc. Udine Con. 1984, CISM Courses and Lecture 287 R. Göbel at al. Springer Vienna (1984), 141-150. | MR
[9] Corner, A. L. S.: A note on rank and direct decompositions of torsion-free Abelian groups. Proc. Camb. Philos. Soc. 57 (1961), 230-233. | DOI | MR | Zbl
[10] Drozd, J. A.: Matrix problems and categories of matrices. J. Sov. Math. 3 (1975), 692-699. | DOI
[11] Dugas, M.: $BR$-groups with type set $(1,2)$. Forum Math. 13 (2001), 143-148. | DOI | MR
[12] Faticoni, T., Schultz, P.: Direct decompositions of acd groups with primary regulating index. Abelian Groups and Modules. Proc. 1995 Colorado Springs Conference D. Arnold et al. Marcel Dekker New York (1996), 233-241. | MR | Zbl
[13] Fuchs, L.: Infinite Abelian Groups, Vol. II. Pure and Applied Mathematics 36 Academic Press, New York (1973). | MR | Zbl
[14] Jacobson, N.: Basic Algebra I. W. H. Freeman and Company San Francisco (1974). | MR | Zbl
[15] Lady, E. L.: Almost completely decomposable torsion-free Abelian groups. Proc. Am. Math. Soc. 45 (1974), 41-47. | DOI | MR | Zbl
[16] Lady, E. L.: Nearly isomorphic torsion-free abelian groups. J. Algebra 35 (1975), 235-238. | DOI | MR | Zbl
[17] Mader, A.: Almost Completely Decomposable Groups. Gordon and Breach Amsterdam (2000). | MR | Zbl
[18] Mader, A., Strüngmann, L.: Generalized almost completely decomposable groups. Rend. Semin. Mat. Univ. Padova 113 (2005), 47-69. | MR | Zbl
[19] Mutzbauer, O.: Regulating subgroups of Butler groups. Abelian Groups. Proc. 1991 Curaçao Conf. Lecture Notes Pure Appl. Math. 146 L. Fuchs Marcel Dekker New York (1993), 209-216. | MR | Zbl
[20] Mutzbauer, O., Solak, E.: $(1,2)$-groups with $p^3$-regulator quotient. J. Algebra 320 (2008), 3821-3831. | DOI | MR
[21] Nazarova, L. A., Roiter, A. V.: Finitely generated modules over a dyad of local Dedekind rings, and finite groups with an Abelian normal divisor of index $p$. Math. USSR Izv. 3 (1969), 65-89 Russian. | DOI
[22] Nazarova, L. A., Roiter, A. V., Sergeichuk, V. V., Bondarenko, V. M.: Applications of modules over a dyad for the classification of finite $p$-groups possessing an Abelian subgroup of index $p$, and of pairs of mutually annihilating operators. J. Sov. Math. 3 (1975), 636-653 translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 28 (1972),69-92 English. Russian original. | DOI | MR
[23] Sergeichuk, V. V.: Canonical matrices for linear matrix problems. Linear Algebra Appl. 317 (2000), 53-102. | DOI | MR | Zbl
[24] Shapiro, H.: A survey of canonical forms and invariants for unitary similarity. Linear Algebra Appl. 147 (1991), 101-167. | MR | Zbl
[25] Simson, D.: Linear Representations of Partially Ordered Sets and Vector Space Categories. Algebra, Logic and Applications Appl., Vol. 4. Gordon and Breach Brooklyn (2000). | MR
[26] Solak, E.: Almost completely decomposable groups of type $(1,2)$. Dissertation Würzburg. (2007).
Cité par Sources :