Keywords: time scale; even order; delay; oscillation; Taylor monomial
@article{10_1007_s10587_013_0017_1,
author = {Erbe, Lynn and Mert, Raziye and Peterson, Allan and Zafer, A\u{g}ac{\i}k},
title = {Oscillation of even order nonlinear delay dynamic equations on time scales},
journal = {Czechoslovak Mathematical Journal},
pages = {265--279},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0017-1},
mrnumber = {3035510},
zbl = {1274.34262},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0017-1/}
}
TY - JOUR AU - Erbe, Lynn AU - Mert, Raziye AU - Peterson, Allan AU - Zafer, Ağacık TI - Oscillation of even order nonlinear delay dynamic equations on time scales JO - Czechoslovak Mathematical Journal PY - 2013 SP - 265 EP - 279 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0017-1/ DO - 10.1007/s10587-013-0017-1 LA - en ID - 10_1007_s10587_013_0017_1 ER -
%0 Journal Article %A Erbe, Lynn %A Mert, Raziye %A Peterson, Allan %A Zafer, Ağacık %T Oscillation of even order nonlinear delay dynamic equations on time scales %J Czechoslovak Mathematical Journal %D 2013 %P 265-279 %V 63 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0017-1/ %R 10.1007/s10587-013-0017-1 %G en %F 10_1007_s10587_013_0017_1
Erbe, Lynn; Mert, Raziye; Peterson, Allan; Zafer, Ağacık. Oscillation of even order nonlinear delay dynamic equations on time scales. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 265-279. doi: 10.1007/s10587-013-0017-1
[1] Agarwal, R. P., Bohner, M.: Basic calculus on time scales and some of its applications. Result. Math. 35 (1999), 3-22. | DOI | MR | Zbl
[2] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001). | MR | Zbl
[3] Çakmak, D., Tiryaki, A.: Oscillation criteria for certain forced second-order nonlinear differential equations with delayed argument. Comput. Math. Appl. 49 (2005), 1647-1653. | DOI | MR | Zbl
[4] El-Sayed, M. A.: An oscillation criterion for a forced second-order linear differential equation. Proc. Am. Math. Soc. 118 (1993), 813-817. | MR | Zbl
[5] Erbe, L., Hassan, T. S., Peterson, A.: Oscillation of second order neutral delay differential equations. Adv. Dyn. Syst. Appl. 3 (2008), 53-71. | MR
[6] Han, Z., Sun, S., Shi, B.: Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales. J. Math. Anal. Appl. 334 (2007), 847-858. | DOI | MR | Zbl
[7] Kartsatos, A. G.: On the maintenance of oscillation of $n$-th order equations under the effect of a small forcing term. J. Differ. Equations 10 (1971), 355-363. | DOI | MR
[8] Lakshmikantham, V., Sivasundaram, S., Kaymakçalan, B.: Dynamic Systems on Measure Chains. Kluwer Academic Publishers, Dordrecht (1996). | MR | Zbl
[9] Mert, R., Zafer, A.: Eventually positive solutions of second-order superlinear dynamic equations. Further progress in analysis. Proceedings of the 6th International ISAAC Congress, 13-18 August, 2007, Ankara, Turkey, World Scientific (2009), 535-544 H. G. W. Begehr et. al. | MR | Zbl
[10] Mert, R., Zafer, A.: A necessary and sufficient condition for oscillation of second order sublinear delay dynamic equations. Discrete Contin. Dyn. Syst. Supplement Volume (2011), 1061-1067. | MR
[11] Naito, M.: On strong oscillation of retarded differential equations. Hiroshima Math. J. 11 (1981), 553-560. | DOI | MR | Zbl
[12] Onose, H.: A comparison theorem and the forced oscillation. Bull. Aust. Math. Soc. 13 (1975), 13-19. | DOI | MR | Zbl
[13] Ou, C. H., Wong, J. S. W.: Forced oscillation of $n$th order functional differential equations. J. Math. Anal. Appl. 262 (2001), 722-732. | DOI | MR | Zbl
[14] Sun, Y. G., Wong, J. S. W.: Note on forced oscillation of $n$th-order sublinear differential equations. J. Math. Anal. Appl. 298 (2004), 114-119. | DOI | MR | Zbl
[15] Yílmaz, Y. Şahiner, Zafer, A.: Oscillation of even order nonlinear neutral differential equations with damping. Math. Inequal. Appl. 1 (1998), 445-451. | MR
[16] Yang, Q.: Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential. Appl. Math. Comput. 135 (2003), 49-64. | DOI | MR | Zbl
Cité par Sources :