Keywords: elementary submodel; separable reduction; porous set; $\sigma $-porous set
@article{10_1007_s10587_013_0015_3,
author = {C\'uth, Marek and Rmoutil, Martin},
title = {$\sigma $-porosity is separably determined},
journal = {Czechoslovak Mathematical Journal},
pages = {219--234},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0015-3},
mrnumber = {3035508},
zbl = {1274.54093},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0015-3/}
}
TY - JOUR AU - Cúth, Marek AU - Rmoutil, Martin TI - $\sigma $-porosity is separably determined JO - Czechoslovak Mathematical Journal PY - 2013 SP - 219 EP - 234 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0015-3/ DO - 10.1007/s10587-013-0015-3 LA - en ID - 10_1007_s10587_013_0015_3 ER -
Cúth, Marek; Rmoutil, Martin. $\sigma $-porosity is separably determined. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 219-234. doi: 10.1007/s10587-013-0015-3
[1] Cúth, M.: Separable reduction theorems by the method of elementary submodels. Fundam. Math. 219 191-222 (2012). | DOI | MR
[2] Dow, A.: An introduction to applications of elementary submodels to topology. Topology Proc. 13 (1988), 17-72. | MR | Zbl
[3] Kruger, A. Y.: On Fréchet subdifferentials. J. Math. Sci., New York 116 (2003), 3325-3358. | DOI | MR | Zbl
[4] Kubiś, W.: Banach spaces with projectional skeletons. J. Math. Anal. Appl. 350 (2009), 758-776. | DOI | MR | Zbl
[5] Kunen, K.: Set Theory. An Introduction to Independence Proofs. 2nd print. Studies in Logic and the Foundations of Mathematics, 102 North-Holland, Amsterdam (1983). | MR | Zbl
[6] Lindenstrauss, J., Preiss, D., Tišer, J.: Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces. Annals of Mathematics Studies 179 Princeton, NJ: Princeton University Press (2012). | MR | Zbl
[7] Rmoutil, M.: Products of non-$\sigma$-lower porous sets. Czech. Math. J. 63 (2013), 205-217. | DOI | MR
[8] Zajíek, L.: Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$. Čas. Pěst. Mat. 101 (1976), 350-359. | MR
[9] Zajíek, L.: A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 3 (1984), 403-410. | MR
[10] Zajíek, L.: Porosity and $\sigma$-porosity. Real Anal. Exch. 13 (1987/88), 314-350. | DOI | MR
[11] Zajíek, L.: Fréchet differentiability, strict differentiability and subdifferentiability. Czech. Math. J. 41 (1991), 471-489. | MR
[12] Zajíek, L.: Products of non-$\sigma$-porous sets and Foran systems. Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. | MR
[13] Zajíek, L.: On $\sigma$-porous sets in abstract spaces. Abstr. Appl. Anal. 5 (2005), 509-534. | DOI | MR
[14] Zajíek, L., Zelený, M.: Inscribing compact non-$\sigma$-porous sets into analytic non-$\sigma$-porous sets. Fundam. Math. 185 (2005), 19-39. | MR
[15] Zelený, M., Pelant, J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets. Commentat. Math. Univ. Carol. 45 (2004), 37-72. | MR | Zbl
Cité par Sources :