$\sigma $-porosity is separably determined
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 219-234
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove a separable reduction theorem for $\sigma $-porosity of Suslin sets. In particular, if $A$ is a Suslin subset in a Banach space $X$, then each separable subspace of $X$ can be enlarged to a separable subspace $V$ such that $A$ is $\sigma $-porous in $X$ if and only if $A\cap V$ is $\sigma $-porous in $V$. Such a result is proved for several types of $\sigma $-porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem of L. Zajíček on differentiability of Lipschitz functions on separable Asplund spaces to the nonseparable setting.
We prove a separable reduction theorem for $\sigma $-porosity of Suslin sets. In particular, if $A$ is a Suslin subset in a Banach space $X$, then each separable subspace of $X$ can be enlarged to a separable subspace $V$ such that $A$ is $\sigma $-porous in $X$ if and only if $A\cap V$ is $\sigma $-porous in $V$. Such a result is proved for several types of $\sigma $-porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem of L. Zajíček on differentiability of Lipschitz functions on separable Asplund spaces to the nonseparable setting.
DOI : 10.1007/s10587-013-0015-3
Classification : 03C15, 28A05, 49J50, 54E35, 54E52, 54H05, 58C20
Keywords: elementary submodel; separable reduction; porous set; $\sigma $-porous set
@article{10_1007_s10587_013_0015_3,
     author = {C\'uth, Marek and Rmoutil, Martin},
     title = {$\sigma $-porosity is separably determined},
     journal = {Czechoslovak Mathematical Journal},
     pages = {219--234},
     year = {2013},
     volume = {63},
     number = {1},
     doi = {10.1007/s10587-013-0015-3},
     mrnumber = {3035508},
     zbl = {1274.54093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0015-3/}
}
TY  - JOUR
AU  - Cúth, Marek
AU  - Rmoutil, Martin
TI  - $\sigma $-porosity is separably determined
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 219
EP  - 234
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0015-3/
DO  - 10.1007/s10587-013-0015-3
LA  - en
ID  - 10_1007_s10587_013_0015_3
ER  - 
%0 Journal Article
%A Cúth, Marek
%A Rmoutil, Martin
%T $\sigma $-porosity is separably determined
%J Czechoslovak Mathematical Journal
%D 2013
%P 219-234
%V 63
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0015-3/
%R 10.1007/s10587-013-0015-3
%G en
%F 10_1007_s10587_013_0015_3
Cúth, Marek; Rmoutil, Martin. $\sigma $-porosity is separably determined. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 219-234. doi: 10.1007/s10587-013-0015-3

[1] Cúth, M.: Separable reduction theorems by the method of elementary submodels. Fundam. Math. 219 191-222 (2012). | DOI | MR

[2] Dow, A.: An introduction to applications of elementary submodels to topology. Topology Proc. 13 (1988), 17-72. | MR | Zbl

[3] Kruger, A. Y.: On Fréchet subdifferentials. J. Math. Sci., New York 116 (2003), 3325-3358. | DOI | MR | Zbl

[4] Kubiś, W.: Banach spaces with projectional skeletons. J. Math. Anal. Appl. 350 (2009), 758-776. | DOI | MR | Zbl

[5] Kunen, K.: Set Theory. An Introduction to Independence Proofs. 2nd print. Studies in Logic and the Foundations of Mathematics, 102 North-Holland, Amsterdam (1983). | MR | Zbl

[6] Lindenstrauss, J., Preiss, D., Tišer, J.: Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces. Annals of Mathematics Studies 179 Princeton, NJ: Princeton University Press (2012). | MR | Zbl

[7] Rmoutil, M.: Products of non-$\sigma$-lower porous sets. Czech. Math. J. 63 (2013), 205-217. | DOI | MR

[8] Zajíek, L.: Sets of $\sigma$-porosity and sets of $\sigma$-porosity $(q)$. Čas. Pěst. Mat. 101 (1976), 350-359. | MR

[9] Zajíek, L.: A generalization of an Ekeland-Lebourg theorem and the differentiability of distance functions. Suppl. Rend. Circ. Mat. Palermo, II. Ser. 3 (1984), 403-410. | MR

[10] Zajíek, L.: Porosity and $\sigma$-porosity. Real Anal. Exch. 13 (1987/88), 314-350. | DOI | MR

[11] Zajíek, L.: Fréchet differentiability, strict differentiability and subdifferentiability. Czech. Math. J. 41 (1991), 471-489. | MR

[12] Zajíek, L.: Products of non-$\sigma$-porous sets and Foran systems. Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. | MR

[13] Zajíek, L.: On $\sigma$-porous sets in abstract spaces. Abstr. Appl. Anal. 5 (2005), 509-534. | DOI | MR

[14] Zajíek, L., Zelený, M.: Inscribing compact non-$\sigma$-porous sets into analytic non-$\sigma$-porous sets. Fundam. Math. 185 (2005), 19-39. | MR

[15] Zelený, M., Pelant, J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets. Commentat. Math. Univ. Carol. 45 (2004), 37-72. | MR | Zbl

Cité par Sources :