$\sigma $-porosity is separably determined
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 219-234.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove a separable reduction theorem for $\sigma $-porosity of Suslin sets. In particular, if $A$ is a Suslin subset in a Banach space $X$, then each separable subspace of $X$ can be enlarged to a separable subspace $V$ such that $A$ is $\sigma $-porous in $X$ if and only if $A\cap V$ is $\sigma $-porous in $V$. Such a result is proved for several types of $\sigma $-porosity. The proof is done using the method of elementary submodels, hence the results can be combined with other separable reduction theorems. As an application we extend a theorem of L. Zajíček on differentiability of Lipschitz functions on separable Asplund spaces to the nonseparable setting.
DOI : 10.1007/s10587-013-0015-3
Classification : 03C15, 28A05, 49J50, 54E35, 54E52, 54H05, 58C20
Keywords: elementary submodel; separable reduction; porous set; $\sigma $-porous set
@article{10_1007_s10587_013_0015_3,
     author = {C\'uth, Marek and Rmoutil, Martin},
     title = {$\sigma $-porosity is separably determined},
     journal = {Czechoslovak Mathematical Journal},
     pages = {219--234},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2013},
     doi = {10.1007/s10587-013-0015-3},
     mrnumber = {3035508},
     zbl = {1274.54093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0015-3/}
}
TY  - JOUR
AU  - Cúth, Marek
AU  - Rmoutil, Martin
TI  - $\sigma $-porosity is separably determined
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 219
EP  - 234
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0015-3/
DO  - 10.1007/s10587-013-0015-3
LA  - en
ID  - 10_1007_s10587_013_0015_3
ER  - 
%0 Journal Article
%A Cúth, Marek
%A Rmoutil, Martin
%T $\sigma $-porosity is separably determined
%J Czechoslovak Mathematical Journal
%D 2013
%P 219-234
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0015-3/
%R 10.1007/s10587-013-0015-3
%G en
%F 10_1007_s10587_013_0015_3
Cúth, Marek; Rmoutil, Martin. $\sigma $-porosity is separably determined. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 219-234. doi : 10.1007/s10587-013-0015-3. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0015-3/

Cité par Sources :