Keywords: topologically complete metric space; abstract porosity; $\sigma $-porous set; $\sigma $-lower porous set; Cartesian product
@article{10_1007_s10587_013_0014_4,
author = {Rmoutil, Martin},
title = {Products of non-$\sigma $-lower porous sets},
journal = {Czechoslovak Mathematical Journal},
pages = {205--217},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0014-4},
mrnumber = {3035507},
zbl = {1274.28005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0014-4/}
}
TY - JOUR AU - Rmoutil, Martin TI - Products of non-$\sigma $-lower porous sets JO - Czechoslovak Mathematical Journal PY - 2013 SP - 205 EP - 217 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0014-4/ DO - 10.1007/s10587-013-0014-4 LA - en ID - 10_1007_s10587_013_0014_4 ER -
Rmoutil, Martin. Products of non-$\sigma $-lower porous sets. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 205-217. doi: 10.1007/s10587-013-0014-4
[1] Engelking, R.: General Topology. Rev. and Compl. Ed., Sigma Series in Pure Mathematics 6. Heldermann Berlin (1989). | MR
[2] Koc, M., Zajíček, L.: On Kantorovich's result on the symmetry of Dini derivatives. Commentat. Math. Univ. Carol. 51 (2010), 619-629. | MR | Zbl
[3] Zajíček, L.: Porosity and $\sigma$-porosity. Real Anal. Exch. 13 (1987/88), 314-350. | DOI | MR | Zbl
[4] Zajíček, L.: Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces. Czech. Math. J. 41 (1991), 288-296. | MR | Zbl
[5] Zajíček, L.: Products of non-$\sigma$-porous sets and Foran systems. Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. | MR | Zbl
[6] Zajíček, L.: On $\sigma$-porous sets in abstract spaces. Abstr. Appl. Anal. 5 (2005), 509-534. | DOI | MR
[7] Zajíček, L., Zelený, M.: Inscribing closed non-$\sigma$-lower porous sets into Suslin non-$\sigma$-lower porous sets. Abstr. Appl. Anal. 3 (2005), 221-227. | DOI | MR | Zbl
[8] Zelený, M., Pelant, J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets. Commentat. Math. Univ. Carol. 45 (2004), 37-72. | MR | Zbl
Cité par Sources :