Products of non-$\sigma $-lower porous sets
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 205-217
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present article we provide an example of two closed non-$\sigma $-lower porous sets $A, B \subseteq \mathbb R $ such that the product $A\times B$ is lower porous. On the other hand, we prove the following: Let $X$ and $Y$ be topologically complete metric spaces, let $A\subseteq X$ be a non-$\sigma $-lower porous Suslin set and let $B\subseteq Y$ be a non-$\sigma $-porous Suslin set. Then the product $A\times B$ is non-$\sigma $-lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non-$\sigma $-lower porous sets in topologically complete metric spaces.
In the present article we provide an example of two closed non-$\sigma $-lower porous sets $A, B \subseteq \mathbb R $ such that the product $A\times B$ is lower porous. On the other hand, we prove the following: Let $X$ and $Y$ be topologically complete metric spaces, let $A\subseteq X$ be a non-$\sigma $-lower porous Suslin set and let $B\subseteq Y$ be a non-$\sigma $-porous Suslin set. Then the product $A\times B$ is non-$\sigma $-lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non-$\sigma $-lower porous sets in topologically complete metric spaces.
DOI : 10.1007/s10587-013-0014-4
Classification : 28A05, 54B10, 54E35, 54G20
Keywords: topologically complete metric space; abstract porosity; $\sigma $-porous set; $\sigma $-lower porous set; Cartesian product
@article{10_1007_s10587_013_0014_4,
     author = {Rmoutil, Martin},
     title = {Products of non-$\sigma $-lower porous sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {205--217},
     year = {2013},
     volume = {63},
     number = {1},
     doi = {10.1007/s10587-013-0014-4},
     mrnumber = {3035507},
     zbl = {1274.28005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0014-4/}
}
TY  - JOUR
AU  - Rmoutil, Martin
TI  - Products of non-$\sigma $-lower porous sets
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 205
EP  - 217
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0014-4/
DO  - 10.1007/s10587-013-0014-4
LA  - en
ID  - 10_1007_s10587_013_0014_4
ER  - 
%0 Journal Article
%A Rmoutil, Martin
%T Products of non-$\sigma $-lower porous sets
%J Czechoslovak Mathematical Journal
%D 2013
%P 205-217
%V 63
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0014-4/
%R 10.1007/s10587-013-0014-4
%G en
%F 10_1007_s10587_013_0014_4
Rmoutil, Martin. Products of non-$\sigma $-lower porous sets. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 205-217. doi: 10.1007/s10587-013-0014-4

[1] Engelking, R.: General Topology. Rev. and Compl. Ed., Sigma Series in Pure Mathematics 6. Heldermann Berlin (1989). | MR

[2] Koc, M., Zajíček, L.: On Kantorovich's result on the symmetry of Dini derivatives. Commentat. Math. Univ. Carol. 51 (2010), 619-629. | MR | Zbl

[3] Zajíček, L.: Porosity and $\sigma$-porosity. Real Anal. Exch. 13 (1987/88), 314-350. | DOI | MR | Zbl

[4] Zajíček, L.: Smallness of sets of nondifferentiability of convex functions in non-separable Banach spaces. Czech. Math. J. 41 (1991), 288-296. | MR | Zbl

[5] Zajíček, L.: Products of non-$\sigma$-porous sets and Foran systems. Atti Semin. Mat. Fis. Univ. Modena 44 (1996), 497-505. | MR | Zbl

[6] Zajíček, L.: On $\sigma$-porous sets in abstract spaces. Abstr. Appl. Anal. 5 (2005), 509-534. | DOI | MR

[7] Zajíček, L., Zelený, M.: Inscribing closed non-$\sigma$-lower porous sets into Suslin non-$\sigma$-lower porous sets. Abstr. Appl. Anal. 3 (2005), 221-227. | DOI | MR | Zbl

[8] Zelený, M., Pelant, J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets. Commentat. Math. Univ. Carol. 45 (2004), 37-72. | MR | Zbl

Cité par Sources :