Products of non-$\sigma $-lower porous sets
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 205-217
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the present article we provide an example of two closed non-$\sigma $-lower porous sets $A, B \subseteq \mathbb R $ such that the product $A\times B$ is lower porous. On the other hand, we prove the following: Let $X$ and $Y$ be topologically complete metric spaces, let $A\subseteq X$ be a non-$\sigma $-lower porous Suslin set and let $B\subseteq Y$ be a non-$\sigma $-porous Suslin set. Then the product $A\times B$ is non-$\sigma $-lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non-$\sigma $-lower porous sets in topologically complete metric spaces.
In the present article we provide an example of two closed non-$\sigma $-lower porous sets $A, B \subseteq \mathbb R $ such that the product $A\times B$ is lower porous. On the other hand, we prove the following: Let $X$ and $Y$ be topologically complete metric spaces, let $A\subseteq X$ be a non-$\sigma $-lower porous Suslin set and let $B\subseteq Y$ be a non-$\sigma $-porous Suslin set. Then the product $A\times B$ is non-$\sigma $-lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non-$\sigma $-lower porous sets in topologically complete metric spaces.
DOI :
10.1007/s10587-013-0014-4
Classification :
28A05, 54B10, 54E35, 54G20
Keywords: topologically complete metric space; abstract porosity; $\sigma $-porous set; $\sigma $-lower porous set; Cartesian product
Keywords: topologically complete metric space; abstract porosity; $\sigma $-porous set; $\sigma $-lower porous set; Cartesian product
@article{10_1007_s10587_013_0014_4,
author = {Rmoutil, Martin},
title = {Products of non-$\sigma $-lower porous sets},
journal = {Czechoslovak Mathematical Journal},
pages = {205--217},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0014-4},
mrnumber = {3035507},
zbl = {1274.28005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0014-4/}
}
TY - JOUR AU - Rmoutil, Martin TI - Products of non-$\sigma $-lower porous sets JO - Czechoslovak Mathematical Journal PY - 2013 SP - 205 EP - 217 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0014-4/ DO - 10.1007/s10587-013-0014-4 LA - en ID - 10_1007_s10587_013_0014_4 ER -
Rmoutil, Martin. Products of non-$\sigma $-lower porous sets. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 205-217. doi: 10.1007/s10587-013-0014-4
Cité par Sources :