Keywords: domination subdivision number; graph property; bondage number; Roman bondage number; induced-hereditary property; orientable genus; non-orientable genus
@article{10_1007_s10587_013_0013_5,
author = {Samodivkin, Vladimir},
title = {Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces},
journal = {Czechoslovak Mathematical Journal},
pages = {191--204},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0013-5},
mrnumber = {3035506},
zbl = {1274.05364},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0013-5/}
}
TY - JOUR AU - Samodivkin, Vladimir TI - Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces JO - Czechoslovak Mathematical Journal PY - 2013 SP - 191 EP - 204 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0013-5/ DO - 10.1007/s10587-013-0013-5 LA - en ID - 10_1007_s10587_013_0013_5 ER -
%0 Journal Article %A Samodivkin, Vladimir %T Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces %J Czechoslovak Mathematical Journal %D 2013 %P 191-204 %V 63 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0013-5/ %R 10.1007/s10587-013-0013-5 %G en %F 10_1007_s10587_013_0013_5
Samodivkin, Vladimir. Upper bounds for the domination subdivision and bondage numbers of graphs on topological surfaces. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 191-204. doi: 10.1007/s10587-013-0013-5
[1] Altshuler, A.: Construction and enumeration of regular maps on the torus. Discrete Math. 4 (1973), 201-217. | DOI | MR | Zbl
[2] Carlson, K., Develin, M.: On the bondage number of planar and directed graphs. Discrete Math. 306 (2006), 820-826. | DOI | MR | Zbl
[3] Favaron, O., Haynes, T. W., Hedetniemi, S. T.: Domination subdivision numbers in graphs. Util. Math. 66 (2004), 195-209. | MR | Zbl
[4] Favaron, O., Karami, H., Sheikholeslami, S. M.: Connected domination subdivision numbers of graphs. Util. Math. 77 (2008), 101-111. | MR | Zbl
[5] Favaron, O., Karami, H., Sheikholeslami, S. M.: Paired-domination subdivision numbers of graphs. Graphs Comb. 25 (2009), 503-512. | DOI | MR | Zbl
[6] Gagarin, A., Zverovich, V.: Upper bounds for the bondage number of graphs on topological surfaces. Discrete Math. (2011), 10.1016/j.disc 2011.10.018. | MR
[7] Goddard, W., Haynes, T., Knisley, D.: Hereditary domination and independence parameters. Discuss. Math., Graph Theory. 24 (2004), 239-248. | DOI | MR | Zbl
[8] Haynes, T. W., Hedetniemi, S. T., Merwe, L. C. van der: Total domination subdivision numbers. J. Comb. Math. Comb. Comput. 44 (2003), 115-128. | MR
[9] Haynes, T. W., Henning, M. A., Hopkins, L. S.: Total domination subdivision numbers of graphs. Discuss. Math., Graph Theory 24 (2004), 457-467. | DOI | MR | Zbl
[10] Ivančo, J.: The weight of a graph. Combinatorics, Graphs and Complexity, Proc. 4th Czech. Symp., Prachatice/Czech. 1990, Ann. Discrete Math 51 (1992), 113-116. | DOI | MR | Zbl
[11] Rad, N. Jafari, Volkmann, L.: Roman bondage in graphs. Discuss. Math., Graph Theory 31 (2011), 753-761. | MR
[12] Rad, N. Jafari, Volkmann, L.: On the Roman bondage number of planar graphs. Graphs Comb. 27 (2011), 531-538. | DOI | MR
[13] Jendrol', S., Tuhársky, M.: A Kotzig type theorem for non-orientable surfaces. Math. Slovaca 56 (2006), 245-253. | MR | Zbl
[14] Kang, L., Yuan, J.: Bondage number of planar graphs. Discrete Math. 222 (2000), 191-198. | DOI | MR | Zbl
[15] Michalak, D.: Domination, independence and irredundance with respect to additive induced-hereditary properties. Discrete Math. 286 (2004), 141-146. | DOI | MR
[16] Nakamoto, A., Negami, S.: Full-symmetric embeddings of graphs on closed surfaces. Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci. 49 (2000), 1-15. | MR
[17] Negami, S.: Classification of 6-regular Klein-bottlal graphs. Res. Rep. Inf. Sci. T.I.T. A-96 (1984).
[18] Parsons, T. D., Pica, G., Pisanski, T., Ventre, A. G. S.: Orientably simple graphs. Math. Slovaca 37 (1987), 391-394. | MR | Zbl
[19] ReVelle, C. S., Rosing, K. E.: Defendens imperium romanum: A classical problem in military strategy. Am. Math. Mon. 107 (2000), 585-594. | DOI | MR | Zbl
[20] Samodivkin, V.: Domination with respect to nondegenerate and hereditary properties. Math. Bohem. 133 (2008), 167-178. | MR | Zbl
[21] Samodivkin, V.: Domination with respect to nondegenerate properties: bondage number. Australas. J. Comb. 45 (2009), 217-226. | MR | Zbl
[22] Stewart, I.: Defend the Roman Empire. Sci. Amer. 281 (1999), 136-139. | DOI
[23] Teschner, U.: A new upper bound for the bondage number of graphs with small domination number. Australas. J. Comb. 12 (1995), 27-35. | MR | Zbl
[24] Thomassen, C.: The Jordan-Schönflies theorem and the classification of surfaces. Am. Math. Mon. 99 (1992), 116-130. | DOI | MR | Zbl
[25] Velammal, S.: Studies in Graph Theory: Covering, Independence, Domination and Related Topics. Ph.D. Thesis (1997).
[26] Youngs, J. W. T.: Minimal imbeddings and the genus of a graph. J. Math. Mech. 12 (1963), 303-315 English. Russian original translation from Kibernet. Sb., N. Ser. 7, (1970), 145-159. | MR | Zbl
Cité par Sources :