Slant and pseudo-slant submanifolds in ${\rm LCS}$-manifolds
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 177-190
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show new results on when a pseudo-slant submanifold is a LCS-manifold. Necessary and sufficient conditions for a submanifold to be pseudo-slant are given. We obtain necessary and sufficient conditions for the integrability of distributions which are involved in the definition of the pseudo-slant submanifold. We characterize the pseudo-slant product and give necessary and sufficient conditions for a pseudo-slant submanifold to be the pseudo-slant product. Also we give an example of a slant submanifold in an LCS-manifold to illustrate the subject.
We show new results on when a pseudo-slant submanifold is a LCS-manifold. Necessary and sufficient conditions for a submanifold to be pseudo-slant are given. We obtain necessary and sufficient conditions for the integrability of distributions which are involved in the definition of the pseudo-slant submanifold. We characterize the pseudo-slant product and give necessary and sufficient conditions for a pseudo-slant submanifold to be the pseudo-slant product. Also we give an example of a slant submanifold in an LCS-manifold to illustrate the subject.
DOI : 10.1007/s10587-013-0012-6
Classification : 53C15, 53C25, 53C40
Keywords: slant submanifold; pseudo-slant submanifold; ${\rm LCS}$-manifold
@article{10_1007_s10587_013_0012_6,
     author = {At\c{c}eken, Mehmet and Kumar Hui, Shyamal},
     title = {Slant and pseudo-slant submanifolds in ${\rm LCS}$-manifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {177--190},
     year = {2013},
     volume = {63},
     number = {1},
     doi = {10.1007/s10587-013-0012-6},
     mrnumber = {3035505},
     zbl = {1274.53047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0012-6/}
}
TY  - JOUR
AU  - Atçeken, Mehmet
AU  - Kumar Hui, Shyamal
TI  - Slant and pseudo-slant submanifolds in ${\rm LCS}$-manifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 177
EP  - 190
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0012-6/
DO  - 10.1007/s10587-013-0012-6
LA  - en
ID  - 10_1007_s10587_013_0012_6
ER  - 
%0 Journal Article
%A Atçeken, Mehmet
%A Kumar Hui, Shyamal
%T Slant and pseudo-slant submanifolds in ${\rm LCS}$-manifolds
%J Czechoslovak Mathematical Journal
%D 2013
%P 177-190
%V 63
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0012-6/
%R 10.1007/s10587-013-0012-6
%G en
%F 10_1007_s10587_013_0012_6
Atçeken, Mehmet; Kumar Hui, Shyamal. Slant and pseudo-slant submanifolds in ${\rm LCS}$-manifolds. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 177-190. doi: 10.1007/s10587-013-0012-6

[1] Atçeken, M.: Slant submanifolds of a Riemannian product manifold. Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 215-224. | DOI | MR

[2] Bishop, R. L., O'Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145 (1969), 1-49. | DOI | MR | Zbl

[3] Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Semi-slant submanifolds of a Sasakian manifold. Geom. Dedicata 78 (1999), 183-199. | DOI | MR | Zbl

[4] Cabrerizo, J. L., Carriazo, A., Fernández, L. M., Fernández, M.: Structure on a slant submanifold of a contact manifold. Indian J. Pure Appl. Math. 31 (2000), 857-864. | MR | Zbl

[5] Carriazo, A., Fernández, L. M., Hans-Uber, M. B.: Some slant submanifolds of $S$-manifolds. Acta Math. Hung. 107 (2005), 267-285. | DOI | MR | Zbl

[6] Chen, B. Y.: Geometry of Slant Submanifolds. Kath. Univ. Leuven, Dept. of Mathematics Leuven (1990). | MR | Zbl

[7] Khan, V. A., Khan, M. A.: Pseudo-slant submanifolds of a Sasakian manifold. Indian J. Pure Appl. Math. 38 (2007), 31-42. | MR | Zbl

[8] Lotta, A.: Slant submanifolds in contact geometry. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 39 (1996), 183-198. | Zbl

[9] Matsumoto, K., Mihai, I.: On a certain transformation in a Lorentzian para-Sasakian manifold. Tensor, New Ser. 47 (1988), 189-197. | MR | Zbl

[10] Mihai, I., Chen, B. Y.: Classification of quasi-minimal slant surfaces in Lorentzian complex space forms. Acta Math. Hung. 122 (2009), 307-328. | DOI | MR | Zbl

[11] Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nou\v a, Mat. 40 (1994), 55-61. | MR | Zbl

[12] Shaikh, A. A.: On Lorentzian almost paracontact manifolds with a structure of the concircular type. Kyungpook Math. J. 43 (2003), 305-314. | MR | Zbl

[13] Shaikh, A. A., Baishya, K. K.: On concircular structure spacetimes. J. Math. Stat. 1 (2005), 129-132. | DOI | MR | Zbl

[14] Shaikh, A. A., Kim, H. Y., Hui, S. K.: On Lorentzian quasi-Einstein manifolds. J. Korean Math. Soc. 48 (2011), 669-689. | DOI | MR | Zbl

[15] Yano, K.: Concircular geometry. 1. Concircular transformations. Proc. Imp. Acad. Jap. 16 (1940), 195-200. | MR | Zbl

Cité par Sources :