Keywords: special type of nonholonomic $r$-jet; nonholonomic $r$-jet category; classification of semiholonomic $3$-jet
@article{10_1007_s10587_013_0011_7,
author = {Kol\'a\v{r}, Ivan},
title = {On special types of semiholonomic $3$-jets},
journal = {Czechoslovak Mathematical Journal},
pages = {165--175},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0011-7},
mrnumber = {3035504},
zbl = {1274.58001},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0011-7/}
}
Kolář, Ivan. On special types of semiholonomic $3$-jets. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 165-175. doi: 10.1007/s10587-013-0011-7
[1] Ehresmann, C.: Oeuvres Complètes et Commentées. Topologie Algébrique et Géométrie Différentielle. Parties I-1 et I-2. Éd. par Andrée Charles Ehresmann, Suppléments 1 et 2 au Vol. XXIV. Cahiers de Topologie et Géométrie Différentielle (1983), French.
[2] Kolář, I.: The contact of spaces with connection. J. Differ. Geom. 7 (1972), 563-570. | DOI | MR | Zbl
[3] Kolář, I.: Bundle functors of the jet type. Differential Geometry and Applications. Proceedings of the 7th international conference Masaryk University, Brno (1999), 231-237. | MR | Zbl
[4] Kolář, I.: A general point of view to nonholonomic jet bundles. Cah. Topol. Géom. Différ. Catég. 44 (2003), 149-160. | MR | Zbl
[5] Kolář, I.: Weil Bundles as Generalized Jet Spaces. Handbook of global analysis Amsterdam: Elsevier (2008), 625-665. | MR | Zbl
[6] Kolář, I.: On special types of nonholonomic contact elements. Differ. Geom. Appl. 29 (2011), 135-140. | DOI | MR | Zbl
[7] Kolář, I., Mikulski, W. M.: On the fiber product preserving bundle functors. Differ. Geom. Appl. 11 (1999), 105-115. | DOI | MR
[8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993). | MR
[9] Libermann, P.: Introduction to the theory of semi-holonomic jets. Arch. Math., Brno 33 (1997), 173-189. | MR
[10] Vosmanská, G.: Natural transformations of semi-holonomic $3$-jets. Arch. Math., Brno 31 (1995), 313-318. | MR | Zbl
Cité par Sources :