A non-archimedean Dugundji extension theorem
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 157-164 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove a non-archimedean Dugundji extension theorem for the spaces $C^{\ast }(X,\mathbb {K})$ of continuous bounded functions on an ultranormal space $X$ with values in a non-archimedean non-trivially valued complete field $\mathbb {K}$. Assuming that $\mathbb {K}$ is discretely valued and $Y$ is a closed subspace of $X$ we show that there exists an isometric linear extender $T\colon C^{\ast }(Y,\mathbb {K})\rightarrow C^{\ast }(X,\mathbb {K})$ if $X$ is collectionwise normal or $Y$ is Lindelöf or $\mathbb {K}$ is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace $Y$ of an ultraregular space $X$ is a retract of $X$.
We prove a non-archimedean Dugundji extension theorem for the spaces $C^{\ast }(X,\mathbb {K})$ of continuous bounded functions on an ultranormal space $X$ with values in a non-archimedean non-trivially valued complete field $\mathbb {K}$. Assuming that $\mathbb {K}$ is discretely valued and $Y$ is a closed subspace of $X$ we show that there exists an isometric linear extender $T\colon C^{\ast }(Y,\mathbb {K})\rightarrow C^{\ast }(X,\mathbb {K})$ if $X$ is collectionwise normal or $Y$ is Lindelöf or $\mathbb {K}$ is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace $Y$ of an ultraregular space $X$ is a retract of $X$.
DOI : 10.1007/s10587-013-0010-8
Classification : 46S10, 54C35
Keywords: Dugundji extension theorem; non-archimedean space; space of continuous functions; 0-dimensional space
@article{10_1007_s10587_013_0010_8,
     author = {K\k{a}kol, Jerzy and Kubzdela, Albert and \'Sliwa, Wies{\l}aw},
     title = {A non-archimedean {Dugundji} extension theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {157--164},
     year = {2013},
     volume = {63},
     number = {1},
     doi = {10.1007/s10587-013-0010-8},
     mrnumber = {3035503},
     zbl = {1274.46131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0010-8/}
}
TY  - JOUR
AU  - Kąkol, Jerzy
AU  - Kubzdela, Albert
AU  - Śliwa, Wiesław
TI  - A non-archimedean Dugundji extension theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 157
EP  - 164
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0010-8/
DO  - 10.1007/s10587-013-0010-8
LA  - en
ID  - 10_1007_s10587_013_0010_8
ER  - 
%0 Journal Article
%A Kąkol, Jerzy
%A Kubzdela, Albert
%A Śliwa, Wiesław
%T A non-archimedean Dugundji extension theorem
%J Czechoslovak Mathematical Journal
%D 2013
%P 157-164
%V 63
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0010-8/
%R 10.1007/s10587-013-0010-8
%G en
%F 10_1007_s10587_013_0010_8
Kąkol, Jerzy; Kubzdela, Albert; Śliwa, Wiesław. A non-archimedean Dugundji extension theorem. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 157-164. doi: 10.1007/s10587-013-0010-8

[1] Arens, R.: Extension of functions on fully normal spaces. Pac. J. Math. 2 (1952), 11-22. | DOI | MR | Zbl

[2] Arkhangel'skij, A. V.: Spaces of mappings and rings of continuous functions. General topology III. Encycl. Math. Sci. 51 (1995), 71-156 Translation from Itogi Nauki tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 51 81-171 (1989). | DOI | MR | Zbl

[3] Borges, C. J. R.: On stratifiable spaces. Pac. J. Math. 17 (1966), 1-16. | DOI | MR | Zbl

[4] Groot, J. de: Non-archimedean metrics in topology. Proc. Am. Math. Soc. 7 (1956), 948-953. | DOI | MR | Zbl

[5] Dugundji, J.: An extension of Tietze's theorem. Pac. J. Math. 1 (1951), 353-367. | DOI | MR | Zbl

[6] Ellis, R. L.: A non-Archimedean analogue of the Tietze-Urysohn extension theorem. Nederl. Akad. Wet., Proc., Ser. A 70 (1967), 332-333. | MR | Zbl

[7] Ellis, R. L.: Extending continuous functions on zero-dimensional spaces. Math. Ann. 186 (1970), 114-122. | DOI | MR | Zbl

[8] Engelking, R.: General Topology. Rev. and compl. ed. Sigma Series in Pure Mathematics, 6. Heldermann, Berlin (1989). | MR | Zbl

[9] Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. CMS Books in Mathematics. Springer, Berlin (2011). | MR | Zbl

[10] Gęba, K., Semadeni, Z.: Spaces of continuous functions. V: On linear isotonical embedding of $C(\Omega_1)$ into $C(\Omega_2)$. Stud. Math. 19 (1960), 303-320. | DOI | MR | Zbl

[11] Gruenhage, G., Hattori, Y., Ohta, H.: Dugundji extenders and retracts on generalized ordered spaces. Fundam. Math. 158 (1998), 147-164. | MR | Zbl

[12] Heath, R. W., Lutzer, D. J., Zenor, P. L.: On continuous extenders. Stud. Topol., Proc. Conf. Charlotte, N. C., 1974 203-213. | MR | Zbl

[13] Kuratowski, K.: Topology. Vol. II. Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw (1968). | MR

[14] Michael, E.: Some extension theorem for continuous functions. Pac. J. Math. 3 (1953), 789-806. | DOI | MR

[15] Perez-Garcia, C., Schikhof, W. H.: Localy Convex Spaces Over Non-Archimedean Valued Fields. Cambridge University Press, Cambridge (2010). | MR

[16] Douwen, E. K. van: Simultaneous linear extension of continuous functions. General Topology Appl. 5 (1975), 297-319. | DOI | MR

[17] Douwen, E. K. van, Lutzer, D. J., Przymusiński, T. C.: Some extensions of the Tietze-Urysohn theorem. Am. Math. Mon. 84 (1977), 435-441. | DOI | MR

[18] Rooij, A. C. M. van: Non-Archimedean Functional Analysis. Monographs and Textbooks in Pure and Applied Mathematics. 51. Marcel Dekker, New York (1978). | MR

Cité par Sources :