Keywords: transpose; semidualizing module; generalized Gorenstein dimension; depth; Auslander-Bridger formula
@article{10_1007_s10587_013_0009_1,
author = {Geng, Yuxian},
title = {A generalization of the {Auslander} transpose and the generalized {Gorenstein} dimension},
journal = {Czechoslovak Mathematical Journal},
pages = {143--156},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0009-1},
mrnumber = {3035502},
zbl = {1274.13022},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0009-1/}
}
TY - JOUR AU - Geng, Yuxian TI - A generalization of the Auslander transpose and the generalized Gorenstein dimension JO - Czechoslovak Mathematical Journal PY - 2013 SP - 143 EP - 156 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0009-1/ DO - 10.1007/s10587-013-0009-1 LA - en ID - 10_1007_s10587_013_0009_1 ER -
%0 Journal Article %A Geng, Yuxian %T A generalization of the Auslander transpose and the generalized Gorenstein dimension %J Czechoslovak Mathematical Journal %D 2013 %P 143-156 %V 63 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0009-1/ %R 10.1007/s10587-013-0009-1 %G en %F 10_1007_s10587_013_0009_1
Geng, Yuxian. A generalization of the Auslander transpose and the generalized Gorenstein dimension. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 143-156. doi: 10.1007/s10587-013-0009-1
[1] Auslander, M., Bridger, M.: Stable Module Theory. Mem. Am. Math. Soc. 94 (1969). | MR | Zbl
[2] Auslander, M., Reiten, I.: Cohen-Macaulay and Gorenstein Artin algebras. Representation Theory of Finite Groups and Finite-Dimensional Algebras, Proc. Conf., Bielefeld/Ger. Prog. Math. 95, Birkhäuser, Basel (1991), 221-245. | MR | Zbl
[3] Bourbaki, N.: Elements of Mathematics. Commutative Algebra. Chapters 1-7. Transl. from the French. Softcover Edition of the 2nd printing 1989. Springer, Berlin (1989). | MR
[4] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Mathematical Series, 19 Princeton University Press XV (1956). | MR | Zbl
[5] Christensen, L. W.: Gorenstein Dimension. Lecture Notes in Mathematics 1747 Springer, Berlin (2000). | DOI | MR
[6] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. | DOI | MR | Zbl
[7] Enochs, E. E., Jenda, O. M. G.: Gorenstein injective and projective modules. Math. Z. 220 (1995), 611-633. | DOI | MR | Zbl
[8] Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31 (1972), 276-284. | MR
[9] Holm, H., Jørgensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions. J. Pure Appl. Algebra 205 (2006), 423-445. | DOI | MR
[10] Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781-808. | DOI | MR | Zbl
[11] Huang, Z.: On a generalization of the Auslander-Bridger transpose. Commun. Algebra 27 (1999), 5791-5812. | DOI | MR | Zbl
[12] Huang, Z.: $\omega$-$k$-torsionfree modules and $\omega$-left approximation dimension. Sci. China, Ser. A 44 (2001), 184-192. | DOI | MR | Zbl
[13] Huang, Z., Tang, G.: Self-orthogonal modules over coherent rings. J. Pure Appl. Algebra 161 (2001), 167-176. | DOI | MR | Zbl
[14] Matsumura, H.: Commutative Algebra. 2nd ed. Mathematics Lecture Note Series, 56 The Benjamin/Cummings Publishing Company, Reading, Massachusetts (1980). | MR | Zbl
[15] Strooker, J. R.: An Auslander-Buchsbaum identity for semidualizing modules. Available from the arXiv: math.AC/0611643.
[16] Wakamatsu, T.: On modules with trivial self-extensions. J. Algebra 114 (1988), 106-114. | DOI | MR | Zbl
[17] White, D.: Gorenstein projective dimension with respect to a semidualizing module. J. Commut. Algebra 2 (2010), 111-137. | DOI | MR
Cité par Sources :