Keywords: Newton's method; Banach space; rate of convergence; semilocal convergence; nondiscrete mathematical induction; estimate function
@article{10_1007_s10587_013_0008_2,
author = {Argyros, Ioannis K. and Hilout, Sa{\"\i}d},
title = {Extending the applicability of {Newton's} method using nondiscrete induction},
journal = {Czechoslovak Mathematical Journal},
pages = {115--141},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0008-2},
mrnumber = {3035501},
zbl = {1274.65163},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0008-2/}
}
TY - JOUR AU - Argyros, Ioannis K. AU - Hilout, Saïd TI - Extending the applicability of Newton's method using nondiscrete induction JO - Czechoslovak Mathematical Journal PY - 2013 SP - 115 EP - 141 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0008-2/ DO - 10.1007/s10587-013-0008-2 LA - en ID - 10_1007_s10587_013_0008_2 ER -
%0 Journal Article %A Argyros, Ioannis K. %A Hilout, Saïd %T Extending the applicability of Newton's method using nondiscrete induction %J Czechoslovak Mathematical Journal %D 2013 %P 115-141 %V 63 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0008-2/ %R 10.1007/s10587-013-0008-2 %G en %F 10_1007_s10587_013_0008_2
Argyros, Ioannis K.; Hilout, Saïd. Extending the applicability of Newton's method using nondiscrete induction. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 115-141. doi: 10.1007/s10587-013-0008-2
[1] Amat, S., Bermúdez, C., Busquier, S., Gretay, J.: Convergence by nondiscrete mathematical induction of a two step secant's method. Rocky Mt. J. Math. 37 (2007), 359-369. | DOI | MR | Zbl
[2] Amat, S., Busquier, S.: Third-order iterative methods under Kantorovich conditions. J. Math. Anal. Appl. 336 (2007), 243-261. | DOI | MR | Zbl
[3] Amat, S., Busquier, S., Gutiérrez, J. M., Hernández, M. A.: On the global convergence of Chebyshev's iterative method. J. Comput. Appl. Math. 220 (2008), 17-21. | DOI | MR | Zbl
[4] Argyros, I. K.: The Theory and Application of Abstract Polynomial Equations. St. Lucie/CRC/Lewis Publ. Mathematics series, Boca Raton, Florida, USA (1998).
[5] Argyros, I. K.: A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298 (2004), 374-397. | DOI | MR | Zbl
[6] Argyros, I. K.: On the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169 (2004), 315-332. | DOI | MR | Zbl
[7] Argyros, I. K.: Concerning the ``terra incognita'' between convergence regions of two Newton methods. Nonlinear Anal., Theory Methods Appl. 62 (2005), 179-194. | DOI | MR | Zbl
[8] Argyros, I. K.: Approximating solutions of equations using Newton's method with a modified Newton's method iterate as a starting point. Rev. Anal. Numér. Théor. Approx. 36 (2007), 123-137. | MR | Zbl
[9] Argyros, I. K.: Computational Theory of Iterative Methods. Studies in Computational Mathematics 15. Elsevier, Amsterdam (2007). | MR | Zbl
[10] Argyros, I. K.: On a class of Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 228 (2009), 115-122. | DOI | MR | Zbl
[11] Argyros, I. K.: A semilocal convergence analysis for directional Newton methods. Math. Comput. 80 (2011), 327-343. | DOI | MR | Zbl
[12] Argyros, I. K., Hilout, S.: Efficient Methods for Solving Equations and Variational Inequalities. Polimetrica Publisher, Milano, Italy (2009). | MR
[13] Argyros, I. K., Hilout, S.: Enclosing roots of polynomial equations and their applications to iterative processes. Surv. Math. Appl. 4 (2009), 119-132. | MR | Zbl
[14] Argyros, I. K., Hilout, S.: Extending the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 234 (2010), 2993-3006. | DOI | MR | Zbl
[15] Argyros, I. K., Hilout, S., Tabatabai, M. A.: Mathematical Modelling with Applications in Biosciences and Engineering. Nova Publishers, New York, 2011. | MR
[16] Bi, W., Wu, Q., Ren, H.: Convergence ball and error analysis of the Ostrowski-Traub method. Appl. Math., Ser. B (Engl. Ed.) 25 (2010), 374-378. | MR | Zbl
[17] Cătinaş, E.: The inexact, inexact perturbed, and quasi-Newton methods are equivalent models. Math. Comput. 74 (2005), 291-301. | DOI | MR | Zbl
[18] Chen, X., Yamamoto, T.: Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. Optimization 10 (1989), 37-48. | DOI | MR | Zbl
[19] Deuflhard, P.: Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms. Springer Series in Computational Mathematics 35. Springer, Berlin (2004). | MR | Zbl
[20] Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., Romero, N., Rubio, M. J.: The Newton method: from Newton to Kantorovich. Spanish Gac. R. Soc. Mat. Esp. 13 (2010), 53-76. | MR | Zbl
[21] Ezquerro, J. A., Hernández, M. A.: On the $R$-order of convergence of Newton's method under mild differentiability conditions. J. Comput. Appl. Math. 197 (2006), 53-61. | DOI | MR | Zbl
[22] Ezquerro, J. A., Hernández, M. A.: An improvement of the region of accessibility of Chebyshev's method from Newton's method. Math. Comput. 78 (2009), 1613-1627. | DOI | MR | Zbl
[23] Ezquerro, J. A., Hernández, M. A., Romero, N.: Newton-type methods of high order and domains of semilocal and global convergence. Appl. Math. Comput. 214 (2009), 142-154. | DOI | MR | Zbl
[24] Gragg, W. B., Tapia, R. A.: Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal. 11 (1974), 10-13. | DOI | MR | Zbl
[25] Hernández, M. A.: A modification of the classical Kantorovich conditions for Newton's method. J. Comput. Appl. Math. 137 (2001), 201-205. | DOI | MR | Zbl
[26] Kantorovich, L. V., Akilov, G. P.: Functional Analysis. Transl. from the Russian. Pergamon Press, Oxford (1982). | MR | Zbl
[27] Krishnan, S., Manocha, D.: An efficient surface intersection algorithm based on lower-dimensional formulation. ACM Trans. on Graphics. 16 (1997), 74-106. | DOI
[28] Lukács, G.: The generalized inverse matrix and the surface-surface intersection problem. Theory and Practice of Geometric Modeling, Lect. Conf., Blaubeuren/FRG 1988 167-185 (1989). | MR | Zbl
[29] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics. Academic Press, New York (1970). | MR | Zbl
[30] Ostrowski, A. M.: Sur la convergence et l'estimation des erreurs dans quelques procédés de résolution des équations numériques. French Gedenkwerk D. A. Grave, Moskau 213-234 (1940). | MR | Zbl
[31] Ostrowski, A. M.: La méthode de Newton dans les espaces de Banach. (The Newton method in Banach spaces). French C. R. Acad. Sci., Paris, Sér. A 272 (1971), 1251-1253. | MR | Zbl
[32] Ostrowski, A. M.: Solution of Equations in Euclidean and Banach Spaces. 3rd ed. of solution of equations and systems of equations. Pure and Applied Mathematics, 9. Academic Press, New York (1973). | MR | Zbl
[33] Păvăloiu, I.: Introduction in the Theory of Approximation of Equations Solutions. Dacia Ed. Cluj-Napoca (1976).
[34] Potra, F. A.: A characterization of the divided differences of an operator which can be represented by Riemann integrals. Math., Rev. Anal. Numér. Théor. Approximation, Anal. Numér. Théor. Approximation 9 (1980), 251-253. | MR | Zbl
[35] Potra, F. A.: An application of the induction method of V. Pták to the study of regula falsi. Apl. Mat. 26 (1981), 111-120. | MR | Zbl
[36] Potra, F. A.: The rate of convergence of a modified Newton's process. Apl. Mat. 26 (1981), 13-17. | MR | Zbl
[37] Potra, F. A.: An error analysis for the secant method. Numer. Math. 38 (1982), 427-445. | DOI | MR | Zbl
[38] Potra, F. A.: On the convergence of a class of Newton-like methods. Iterative solution of nonlinear systems of equations, Proc. Meeting, Oberwolfach 1982, Lect. Notes Math. 953 125-137. | DOI | MR | Zbl
[39] Potra, F. A.: On the a posteriori error estimates for Newton's method. Beitr. Numer. Math. 12 (1984), 125-138. | MR
[40] Potra, F. A.: On a class of iterative procedures for solving nonlinear equations in Banach spaces. Computational Mathematics, Banach Cent. Publ. 13 607-621 (1984). | DOI | MR | Zbl
[41] Potra, F. A.: Sharp error bounds for a class of Newton-like methods. Libertas Math. 5 (1985), 71-84. | MR | Zbl
[42] Potra, F. A., Pták, V.: Sharp error bounds for Newton's process. Numer. Math. 34 (1980), 63-72. | DOI | MR | Zbl
[43] Potra, F. A., Pták, V.: Nondiscrete induction and a double step secant method. Math. Scand. 46 (1980), 236-250. | DOI | MR | Zbl
[44] Potra, F. A., Pták, V.: On a class of modified Newton processes. Numer. Funct. Anal. Optimization 2 (1980), 107-120. | DOI | MR | Zbl
[45] Potra, F. A., Pták, V.: A generalization of regula falsi. Numer. Math. 36 (1981), 333-346. | DOI | MR | Zbl
[46] Potra, F. A., Pták, V.: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics, 103. Pitman Advanced Publishing Program, Boston (1984). | MR | Zbl
[47] Proinov, P. D.: General local convergence theory for a class of iterative processes and its applications to Newton's method. J. Complexity 25 (2009), 38-62. | DOI | MR | Zbl
[48] Proinov, P. D.: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complexity 26 (2010), 3-42. | DOI | MR | Zbl
[49] Pták, V.: Some metric aspects of the open mapping and closed graph theorems. Math. Ann. 163 (1966), 95-104. | DOI | MR | Zbl
[50] Pták, V.: A quantitative refinement of the closed graph theorem. Czech. Math. J. 24 (1974), 503-506. | MR | Zbl
[51] Pták, V.: A theorem of the closed graph type. Manuscr. Math. 13 (1974), 109-130. | DOI | MR | Zbl
[52] Pták, V.: Deux théoremes de factorisation. C. R. Acad. Sci., Paris, Sér. A 278 (1974), 1091-1094. | MR | Zbl
[53] Pták, V.: Concerning the rate of convergence of Newton's process. Commentat. Math. Univ. Carol. 16 (1975), 699-705. | MR | Zbl
[54] Pták, V.: A modification of Newton's method. Čas. Pěst. Mat. 101 (1976), 188-194. | MR | Zbl
[55] Pták, V.: Nondiscrete mathematical induction and iterative existence proofs. Linear Algebra Appl. 13 (1976), 223-238. | DOI | MR | Zbl
[56] Pták, V.: The rate of convergence of Newton's process. Numer. Math. 25 (1976), 279-285. | DOI | MR | Zbl
[57] Pták, V.: Nondiscrete mathematical induction. Gen. Topol. Relat. mod. Anal. Algebra IV, Proc. 4th Prague topol. Symp. 1976, Part A, Lect. Notes Math. 609 166-178 (1977). | DOI | MR | Zbl
[58] Pták, V.: What should be a rate of convergence? RAIRO, Anal. Numér. 11 (1977), 279-286. | DOI | MR
[59] Pták, V.: Stability of exactness. Commentat. math., spec. Vol. II, dedic. L. Orlicz (1979), 283-288. | MR | Zbl
[60] Pták, V.: A rate of convergence. Numer. Funct. Anal. Optimization 1 (1979), 255-271. | DOI | MR | Zbl
[61] Pták, V.: Factorization in Banach algebras. Stud. Math. 65 (1979), 279-285. | DOI | MR | Zbl
[62] Ren, H., Wu, Q.: Convergence ball of a modified secant method with convergence order $1.839.\. $. Appl. Math. Comput. 188 (2007), 281-285. | DOI | MR | Zbl
[63] Rheinboldt, W. C.: A unified convergence theory for a class of iterative processes. SIAM J. Numer. Anal. 5 (1968), 42-63. | DOI | MR | Zbl
[64] Tapia, R. A.: The Kantorovich theorem for Newton's method. Am. Math. Mon. 78 (1971), 389-392. | DOI | MR | Zbl
[65] Wu, Q., Ren, H.: A note on some new iterative methods with third-order convergence. Appl. Math. Comput. 188 (2007), 1790-1793. | DOI | MR | Zbl
[66] Yamamoto, T.: A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987), 545-557. | DOI | MR | Zbl
[67] Zabrejko, P. P., Nguen, D. F.: The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. Optimization 9 (1987), 671-684. | DOI | MR | Zbl
[68] Zinčenko, A. I.: Some approximate methods of solving equations with non-differentiable operators. Ukrainian Dopovidi Akad. Nauk Ukraïn. RSR (1963), 156-161. | MR
Cité par Sources :