Keywords: continuous function; integration; Baire category; porosity
@article{10_1007_s10587_013_0006_4,
author = {G{\l}\k{a}b, Szymon and Strobin, Filip},
title = {Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {91--105},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0006-4},
mrnumber = {3035499},
zbl = {1274.46046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0006-4/}
}
TY - JOUR
AU - Głąb, Szymon
AU - Strobin, Filip
TI - Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces
JO - Czechoslovak Mathematical Journal
PY - 2013
SP - 91
EP - 105
VL - 63
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0006-4/
DO - 10.1007/s10587-013-0006-4
LA - en
ID - 10_1007_s10587_013_0006_4
ER -
%0 Journal Article
%A Głąb, Szymon
%A Strobin, Filip
%T Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces
%J Czechoslovak Mathematical Journal
%D 2013
%P 91-105
%V 63
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0006-4/
%R 10.1007/s10587-013-0006-4
%G en
%F 10_1007_s10587_013_0006_4
Głąb, Szymon; Strobin, Filip. Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 91-105. doi: 10.1007/s10587-013-0006-4
[1] Balcerzak, M., Wachowicz, A.: Some examples of meager sets in Banach spaces. Real Anal. Exch. 26 877-884 (2001). | DOI | MR | Zbl
[2] Engelking, R.: General Topology. Sigma Series in Pure Mathematics, 6. Berlin, Heldermann (1989). | MR
[3] Głąb, S., Strobin, F.: Descriptive properties of density preserving autohomeomorphisms of the unit interval. Cent. Eur. J. Math. 8 928-936 (2010). | DOI | MR | Zbl
[4] Halmos, P. R.: Measure Theory. New York: D. Van Nostrand London, Macmillan (1950). | MR | Zbl
[5] Jachymski, J.: A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces. Stud. Math. 170 303-320 (2005). | DOI | MR | Zbl
[6] Strobin, F.: Porosity of convex nowhere dense subsets of normed linear spaces. Abstr. Appl. Anal. 2009 (2009), Article ID 243604, pp. 11. | MR | Zbl
[7] Zajíek, L.: On $\sigma$-porous sets in abstract spaces. Abstr. Appl. Anal. 2005 509-534 (2005). | DOI | MR
Cité par Sources :