Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 91-105
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Jachymski showed that the set $$ \bigg \{(x,y)\in {\bf c}_0\times {\bf c}_0\colon \bigg (\sum _{i=1}^n \alpha (i)x(i)y(i)\bigg )_{n=1}^\infty \text {is bounded}\bigg \} $$ is either a meager subset of ${\bf c}_0\times {\bf c}_0$ or is equal to ${\bf c}_0\times {\bf c}_0$. In the paper we generalize this result by considering more general spaces than ${\bf c}_0$, namely ${\bf C}_0(X)$, the space of all continuous functions which vanish at infinity, and ${\bf C}_b(X)$, the space of all continuous bounded functions. Moreover, we replace the meagerness by $\sigma $-porosity.
DOI :
10.1007/s10587-013-0006-4
Classification :
28A25, 46B25, 54C35, 54E52
Keywords: continuous function; integration; Baire category; porosity
Keywords: continuous function; integration; Baire category; porosity
@article{10_1007_s10587_013_0006_4,
author = {G{\l}\k{a}b, Szymon and Strobin, Filip},
title = {Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {91--105},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {2013},
doi = {10.1007/s10587-013-0006-4},
mrnumber = {3035499},
zbl = {1274.46046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0006-4/}
}
TY - JOUR
AU - Głąb, Szymon
AU - Strobin, Filip
TI - Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces
JO - Czechoslovak Mathematical Journal
PY - 2013
SP - 91
EP - 105
VL - 63
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0006-4/
DO - 10.1007/s10587-013-0006-4
LA - en
ID - 10_1007_s10587_013_0006_4
ER -
%0 Journal Article
%A Głąb, Szymon
%A Strobin, Filip
%T Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces
%J Czechoslovak Mathematical Journal
%D 2013
%P 91-105
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0006-4/
%R 10.1007/s10587-013-0006-4
%G en
%F 10_1007_s10587_013_0006_4
Głąb, Szymon; Strobin, Filip. Dichotomies for ${\bf C}_0(X)$ and ${\bf C}_b(X)$ spaces. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 91-105. doi: 10.1007/s10587-013-0006-4
Cité par Sources :