Keywords: eigenvalue; star complement; non-main eigenvalue; Hamiltonian graph
@article{10_1007_s10587_013_0005_5,
author = {An{\dj}eli\'c, Milica and Cardoso, Domingos M. and Simi\'c, Slobodan K.},
title = {Relations between $(\kappa,\tau)$-regular sets and star complements},
journal = {Czechoslovak Mathematical Journal},
pages = {73--90},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0005-5},
mrnumber = {3035498},
zbl = {1274.05286},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0005-5/}
}
TY - JOUR AU - Anđelić, Milica AU - Cardoso, Domingos M. AU - Simić, Slobodan K. TI - Relations between $(\kappa,\tau)$-regular sets and star complements JO - Czechoslovak Mathematical Journal PY - 2013 SP - 73 EP - 90 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0005-5/ DO - 10.1007/s10587-013-0005-5 LA - en ID - 10_1007_s10587_013_0005_5 ER -
%0 Journal Article %A Anđelić, Milica %A Cardoso, Domingos M. %A Simić, Slobodan K. %T Relations between $(\kappa,\tau)$-regular sets and star complements %J Czechoslovak Mathematical Journal %D 2013 %P 73-90 %V 63 %N 1 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0005-5/ %R 10.1007/s10587-013-0005-5 %G en %F 10_1007_s10587_013_0005_5
Anđelić, Milica; Cardoso, Domingos M.; Simić, Slobodan K. Relations between $(\kappa,\tau)$-regular sets and star complements. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 73-90. doi: 10.1007/s10587-013-0005-5
[1] Bell, F. K.: Characterizing line graphs by star complements. Linear Algebra Appl. 296 (1999), 15-25. | MR | Zbl
[2] Bell, F. K., Simić, S. K.: On graphs whose star complement for $-2$ is a path or cycle. Linear Algebra Appl. 377 (2004), 249-265. | MR
[3] Cardoso, D. M., Cvetković, D.: Graphs with least eigenvalue $-2$ attaining a convex quadratic upper bound for the stability number. Bull., Cl. Sci. Math. Nat., Sci. Math. 133 (2006), 41-55. | DOI | MR
[4] Cardoso, D. M., Rama, P.: Equitable bipartitions of graphs and related results. J. Math. Sci., New York 120 (2004), 869-880. | DOI | MR | Zbl
[5] Cardoso, D. M., Rama, P.: Spectral results on regular graphs with $(k, \tau)$-regular sets. Discrete Math. 307 (2007), 1306-1316. | DOI | MR | Zbl
[6] Cardoso, D. M., Rama, P.: Spectral results on graphs with regularity constraints. Linear Algebra Appl. 423 (2007), 90-98. | MR | Zbl
[7] Cardoso, D. M., Sciriha, I., Zerafa, C.: Main eigenvalues and $(k,\tau)$-regular sets. Linear Algebra Appl. 423 (2010), 2399-2408. | MR
[8] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Application. Pure and Applied Mathematics 87, Academic Press, New York, and VEB Deutscher Verlag der Wissenschaften, Berlin (1980). | MR | Zbl
[9] Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. [Paperback reprint of the hardback edition 1997]. Encyclopedia of Mathematics and Its Applications 66. Cambridge University Press, Cambridge (2008). | MR | Zbl
[10] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). | MR | Zbl
[11] Halldórsson, M. M., Kratochvíl, J., Telle, J. A.: Independent sets with domination constraints. Discrete Appl. Math. 99 (2000), 39-54. | DOI | MR | Zbl
[12] Haemers, W. H., Peeters, M. J. P.: The maximum order of adjacency matrices of graphs with a given rank. Des. Codes Cryptogr., to appear, doi: 10.1007/s10623-011-9548-3. | DOI | MR | Zbl
[13] Neumaier, A.: Regular sets and quasi-symmetric 2-designs. Combinatorial theory, Proc. Conf., Schloss Rauischholzhausen 1982, Lect. Notes Math. 969 (1982), 258-275. | MR | Zbl
[14] Rowlinson, P.: Star complements in finite graphs: A survey. Rend. Semin. Mat. Messina, Ser. II 8 (2002), 145-162. | MR | Zbl
[15] Rowlinson, P.: Co-cliques and star complements in extremal strongly regular graphs. Linear Algebra Appl. 421 (2007), 157-162. | MR | Zbl
[16] Rowlinson, P.: On induced matchings as star complements in regular graphs. J. Math. Sci., New York 182 (2012), 159-163. | DOI | MR | Zbl
[17] Rowlinson, P.: The main eigenvalues of a graph: a survey. Appl. Anal. Discrete Math. 1 (2007), 445-471. | DOI | MR | Zbl
[18] Rowlinson, P.: Regular star complements in strongly regular graphs. Linear Algebra Appl. 436 (2012), 1482-1488. | DOI | MR | Zbl
[19] Telle, J. A.: Characterization of domination-type parameters in graphs. Congr. Numerantium 94 (1993), 9-16. | MR | Zbl
[20] Thompson, D. M.: Eigengraphs: constructing strongly regular graphs with block designs. Util. Math. 20 (1981), 83-115. | MR | Zbl
[21] Zhang, F.: Matrix Theory. Basic Results and Techniques. Universitext. Springer, New York (1999). | MR | Zbl
Cité par Sources :