Relations between $(\kappa,\tau)$-regular sets and star complements
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 73-90.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a finite graph with an eigenvalue $\mu $ of multiplicity $m$. A set $X$ of $m$ vertices in $G$ is called a star set for $\mu $ in $G$ if $\mu $ is not an eigenvalue of the star complement $G\setminus X$ which is the subgraph of $G$ induced by vertices not in $X$. A vertex subset of a graph is $(\kappa ,\tau )$-regular if it induces a $\kappa $-regular subgraph and every vertex not in the subset has $\tau $ neighbors in it. We investigate the graphs having a $(\kappa ,\tau )$-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples.
DOI : 10.1007/s10587-013-0005-5
Classification : 05C38, 05C50
Keywords: eigenvalue; star complement; non-main eigenvalue; Hamiltonian graph
@article{10_1007_s10587_013_0005_5,
     author = {An{\dj}eli\'c, Milica and Cardoso, Domingos M. and Simi\'c, Slobodan K.},
     title = {Relations between $(\kappa,\tau)$-regular sets and star complements},
     journal = {Czechoslovak Mathematical Journal},
     pages = {73--90},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {2013},
     doi = {10.1007/s10587-013-0005-5},
     mrnumber = {3035498},
     zbl = {1274.05286},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0005-5/}
}
TY  - JOUR
AU  - Anđelić, Milica
AU  - Cardoso, Domingos M.
AU  - Simić, Slobodan K.
TI  - Relations between $(\kappa,\tau)$-regular sets and star complements
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 73
EP  - 90
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0005-5/
DO  - 10.1007/s10587-013-0005-5
LA  - en
ID  - 10_1007_s10587_013_0005_5
ER  - 
%0 Journal Article
%A Anđelić, Milica
%A Cardoso, Domingos M.
%A Simić, Slobodan K.
%T Relations between $(\kappa,\tau)$-regular sets and star complements
%J Czechoslovak Mathematical Journal
%D 2013
%P 73-90
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0005-5/
%R 10.1007/s10587-013-0005-5
%G en
%F 10_1007_s10587_013_0005_5
Anđelić, Milica; Cardoso, Domingos M.; Simić, Slobodan K. Relations between $(\kappa,\tau)$-regular sets and star complements. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 73-90. doi : 10.1007/s10587-013-0005-5. http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0005-5/

Cité par Sources :